Variational Integrators for Dissipative Systems

被引:9
|
作者
Limebeer, David J. N. [1 ]
Ober-Blobaum, Sina [2 ]
Farshi, Farhang Haddad [2 ]
机构
[1] Univ Johannesburg, ZA-2006 Johannesburg, South Africa
[2] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
Heat bath; optimal control; symplectic simulation; transmission line; variational integrators; variational principles; DISCRETE MECHANICS; ORDER;
D O I
10.1109/TAC.2020.2965059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article uses physical arguments to derive variational integration schemes for dissipative mechanical systems. These integration algorithms find utility in the solution of the equations of motion and optimal control problems for these systems. Engineers usually represent dissipation effects using phenomenological devices such as "dampers." In this article, we replace these dampers with a lossless transmission-line in order that the equations of motion are derivable from a variational principle. The associated system Lagrangian can then be discretized and used to develop low-order variational integration schemes that inherit the advantageous features of their conservative counterparts. The properties of a lossless spring-inerter based transmission system are analyzed in detail, with the resulting variational integration schemes shown to have excellent numerical properties. The article concludes with the analysis of a dissipative variant of the classical Kepler central force problem.
引用
收藏
页码:1381 / 1396
页数:16
相关论文
共 50 条
  • [1] Variational integrators for stochastic dissipative Hamiltonian systems
    Kraus, Michael
    Tyranowski, Tomasz M.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (02) : 1318 - 1367
  • [2] Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems
    Kane, C
    Marsden, JE
    Ortiz, M
    West, M
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 49 (10) : 1295 - 1325
  • [3] "SLIMPLECTIC" INTEGRATORS: VARIATIONAL INTEGRATORS FOR GENERAL NONCONSERVATIVE SYSTEMS
    Tsang, David
    Galley, Chad R.
    Stein, Leo C.
    Turner, Alec
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2015, 809 (01)
  • [4] Variational integrators for fractional Birkhoffian systems
    He, Lin
    Wu, Huibin
    Mei, Fengxiang
    [J]. NONLINEAR DYNAMICS, 2017, 87 (04) : 2325 - 2334
  • [5] Variational integrators for forced Birkhoffian systems
    Kong, Xinlei
    Wu, Huibin
    Mei, Fengxiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 326 - 332
  • [6] Γ-convergence of Variational Integrators for Constrained Systems
    Schmidt, Bernd
    Leyendecker, Sigrid
    Ortiz, Michael
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (02) : 153 - 177
  • [7] Variational integrators for fractional Birkhoffian systems
    Lin He
    Huibin Wu
    Fengxiang Mei
    [J]. Nonlinear Dynamics, 2017, 87 : 2325 - 2334
  • [8] VARIATIONAL INTEGRATORS FOR HAMILTONIZABLE NONHOLONOMIC SYSTEMS
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Olver, Peter J.
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (02): : 137 - 163
  • [9] Variational integrators for constrained dynamical systems
    Leyendecker, Sigrid
    Marsden, Jerrold E.
    Ortiz, Michael
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (09): : 677 - 708
  • [10] Γ-convergence of Variational Integrators for Constrained Systems
    Bernd Schmidt
    Sigrid Leyendecker
    Michael Ortiz
    [J]. Journal of Nonlinear Science, 2009, 19 : 153 - 177