"SLIMPLECTIC" INTEGRATORS: VARIATIONAL INTEGRATORS FOR GENERAL NONCONSERVATIVE SYSTEMS

被引:24
|
作者
Tsang, David [1 ]
Galley, Chad R. [2 ]
Stein, Leo C. [3 ]
Turner, Alec [1 ]
机构
[1] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[2] CALTECH, Theoret Astrophys, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[3] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
celestial mechanics; methods: numerical; planets and satellites: dynamical evolution and stability; N-BODY PROBLEM; SYMPLECTIC INTEGRATORS; RADIATION; MECHANICS;
D O I
10.1088/2041-8205/809/1/L9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Symplectic integrators are widely used for long-term integration of conservative astrophysical problems due to their ability to preserve the constants of motion; however, they cannot in general be applied in the presence of nonconservative interactions. In this Letter, we develop the "slimplectic" integrator, a new type of numerical integrator that shares many of the benefits of traditional symplectic integrators yet is applicable to general nonconservative systems. We utilize a fixed-time-step variational integrator formalism applied to the principle of stationary nonconservative action developed in Galley et al. As a result, the generalized momenta and energy (Noether current) evolutions are well-tracked. We discuss several example systems, including damped harmonic oscillators, Poynting-Robertson drag, and gravitational radiation reaction, by utilizing our new publicly available code to demonstrate the slimplectic integrator algorithm. Slimplectic integrators are well-suited for integrations of systems where nonconservative effects play an important role in the long-term dynamical evolution. As such they are particularly appropriate for cosmological or celestial N-body dynamics problems where nonconservative interactions, e.g., gas interactions or dissipative tides, can play an important role.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Variational Integrators for Dissipative Systems
    Limebeer, David J. N.
    Ober-Blobaum, Sina
    Farshi, Farhang Haddad
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1381 - 1396
  • [2] General techniques for constructing variational integrators
    Melvin Leok
    Tatiana Shingel
    [J]. Frontiers of Mathematics in China, 2012, 7 : 273 - 303
  • [3] General techniques for constructing variational integrators
    Leok, Melvin
    Shingel, Tatiana
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2012, 7 (02) : 273 - 303
  • [4] Variational integrators for fractional Birkhoffian systems
    He, Lin
    Wu, Huibin
    Mei, Fengxiang
    [J]. NONLINEAR DYNAMICS, 2017, 87 (04) : 2325 - 2334
  • [5] Variational integrators for forced Birkhoffian systems
    Kong, Xinlei
    Wu, Huibin
    Mei, Fengxiang
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 : 326 - 332
  • [6] Variational integrators for fractional Birkhoffian systems
    Lin He
    Huibin Wu
    Fengxiang Mei
    [J]. Nonlinear Dynamics, 2017, 87 : 2325 - 2334
  • [7] Γ-convergence of Variational Integrators for Constrained Systems
    Schmidt, Bernd
    Leyendecker, Sigrid
    Ortiz, Michael
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2009, 19 (02) : 153 - 177
  • [8] VARIATIONAL INTEGRATORS FOR HAMILTONIZABLE NONHOLONOMIC SYSTEMS
    Fernandez, Oscar E.
    Bloch, Anthony M.
    Olver, Peter J.
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2012, 4 (02): : 137 - 163
  • [9] Variational integrators for constrained dynamical systems
    Leyendecker, Sigrid
    Marsden, Jerrold E.
    Ortiz, Michael
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (09): : 677 - 708
  • [10] Γ-convergence of Variational Integrators for Constrained Systems
    Bernd Schmidt
    Sigrid Leyendecker
    Michael Ortiz
    [J]. Journal of Nonlinear Science, 2009, 19 : 153 - 177