Discontinuous Galerkin finite element methods for one-dimensional Rosenau equation

被引:0
|
作者
Danumjaya, P. [1 ]
Balaje, K. [2 ]
机构
[1] BITS Pilani KK Birla, Dept Math, Goa Campus, Sancoale 403726, Goa, India
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2300, Australia
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 04期
关键词
Rosenau equation; Discontinuous Galerkin finite element methods; Semidiscrete method; Completely discrete method; Optimal error estimates; Decay estimates; CONSERVATIVE DIFFERENCE-SCHEMES; MODEL;
D O I
10.1007/s41478-022-00406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, discontinuous Galerkin finite element methods are applied to one-dimensional Rosenau equation. Theoretical results including consistency, a priori bounds and optimal error estimates are established for both semidiscrete and fully discrete schemes. Numerical experiments are performed to validate the theoretical results. The decay estimates are verified numerically for the Rosenau equation.
引用
下载
收藏
页码:1407 / 1426
页数:20
相关论文
共 50 条
  • [31] One-Dimensional Shock-Capturing for High-Order Discontinuous Galerkin Methods
    Casoni, E.
    Peraire, J.
    Huerta, A.
    ECCOMAS MULTIDISCIPLINARY JUBILEE SYMPOSIUM: NEW COMPUTATIONAL CHALLENGES IN MATERIALS, STRUCTURES AND FLUIDS, 2009, 14 : 307 - +
  • [32] Adaptive discontinuous Galerkin finite element methods for the Allen-Cahn equation on polygonal meshes
    Rui Li
    Yali Gao
    Zhangxin Chen
    Numerical Algorithms, 2024, 95 : 1981 - 2014
  • [33] One-dimensional shock-capturing for high-order discontinuous Galerkin methods
    Casoni, E.
    Peraire, J.
    Huerta, A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 71 (06) : 737 - 755
  • [34] Superconvergence of local discontinuous Galerkin methods for one-dimensional convection-diffusion equations
    Cheng, Yingda
    Shu, Chi-Wang
    COMPUTERS & STRUCTURES, 2009, 87 (11-12) : 630 - 641
  • [35] Adaptive discontinuous Galerkin finite element methods for the Allen-Cahn equation on polygonal meshes
    Li, Rui
    Gao, Yali
    Chen, Zhangxin
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1981 - 2014
  • [36] Finite element theory on curved domains with applications to discontinuous Galerkin finite element methods
    Kawecki, Ellya L.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (06) : 1492 - 1536
  • [37] A comparative study on the weak Galerkin, discontinuous Galerkin, and mixed finite element methods
    Lin, Guang
    Liu, Jiangguo
    Sadre-Marandi, Farrah
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 273 : 346 - 362
  • [38] Convergence analysis of the Galerkin finite element method for the fourth-order Rosenau equation
    Shi, Dongyang
    Jia, Xu
    APPLIED MATHEMATICS LETTERS, 2023, 135
  • [39] Discontinuous finite-element method for one-dimensional shallow water equations
    Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China
    不详
    Shuili Fadian Xuebao, 2007, 1 (37-41):
  • [40] FINITE-ELEMENT METHODS FOR ONE-DIMENSIONAL COMBUSTION PROBLEMS
    RAMOS, JI
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1990, 11 (06) : 893 - 906