Discontinuous Galerkin finite element methods for one-dimensional Rosenau equation

被引:0
|
作者
Danumjaya, P. [1 ]
Balaje, K. [2 ]
机构
[1] BITS Pilani KK Birla, Dept Math, Goa Campus, Sancoale 403726, Goa, India
[2] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2300, Australia
来源
JOURNAL OF ANALYSIS | 2022年 / 30卷 / 04期
关键词
Rosenau equation; Discontinuous Galerkin finite element methods; Semidiscrete method; Completely discrete method; Optimal error estimates; Decay estimates; CONSERVATIVE DIFFERENCE-SCHEMES; MODEL;
D O I
10.1007/s41478-022-00406-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, discontinuous Galerkin finite element methods are applied to one-dimensional Rosenau equation. Theoretical results including consistency, a priori bounds and optimal error estimates are established for both semidiscrete and fully discrete schemes. Numerical experiments are performed to validate the theoretical results. The decay estimates are verified numerically for the Rosenau equation.
引用
收藏
页码:1407 / 1426
页数:20
相关论文
共 50 条
  • [11] ROBUST ADAPTIVE hp DISCONTINUOUS GALERKIN FINITE ELEMENT METHODS FOR THE HELMHOLTZ EQUATION
    Congreve, Scott
    Gedicke, Joscha
    Perugia, Ilaria
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (02): : A1121 - A1147
  • [12] High-order multiscale discontinuous Galerkin methods for the one-dimensional stationary Schrödinger equation
    Dong, Bo
    Wang, Wei
    Journal of Computational and Applied Mathematics, 2021, 380
  • [13] A New Multiscale Discontinuous Galerkin Method for the One-Dimensional Stationary Schrodinger Equation
    Dong, Bo
    Shu, Chi-Wang
    Wang, Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (01) : 321 - 345
  • [14] Discontinuous Galerkin finite element method for the wave equation
    Grote, Marcus J.
    Schneebeli, Anna
    Schoetzau, Dominik
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) : 2408 - 2431
  • [15] Achieving Superconvergence by One-Dimensional Discontinuous Finite Elements: Weak Galerkin Method
    Ye, Xiu
    Zhang, Shangyou
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (03) : 590 - 598
  • [16] COUPLING OF DISCONTINUOUS GALERKIN FINITE ELEMENT AND BOUNDARY ELEMENT METHODS
    Of, G.
    Rodin, G. J.
    Steinbach, O.
    Taus, M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (03): : A1659 - A1677
  • [17] Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
    Bo Dong
    Wei Wang
    Communications on Applied Mathematics and Computation, 2024, 6 : 311 - 324
  • [18] SUPERCONVERGENCE OF LOCAL DISCONTINUOUS GALERKIN METHODS FOR ONE-DIMENSIONAL LINEAR PARABOLIC EQUATIONS
    Cao, Waixiang
    Zhang, Zhimin
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 63 - 84
  • [19] An H1-Galerkin mixed finite element method for rosenau equation
    Doss, L. Jones Tarcius
    Aishwarya, L.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (03):
  • [20] Shear locking in one-dimensional finite element methods
    Baier-Saip, J. A.
    Baler, P. A.
    de Faria, A. R.
    Oliveira, J. C.
    Baier, H.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2020, 79