Data-driven Symbolic Regression for Identification of Nonlinear Dynamics in Power Systems

被引:0
|
作者
Stankovic, Alex M. [1 ]
Saric, Aleksandar A. [1 ]
Saric, Andrija T. [2 ]
Transtrum, Mark K. [3 ]
机构
[1] Tufts Univ, Dept Elect & Comp Engn, Medford, MA 02155 USA
[2] Fac Tech Sci, Dept Power Electr & Com Engn, Novi Sad, Serbia
[3] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Power system; Dynamic model; System identification; Nonlinear dynamics; Sparse model; SPARSE IDENTIFICATION;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The paper describes a data-driven system identification method tailored to power systems and demonstrated on models of synchronous generators (SGs). In this work, we extend the recent sparse identification of nonlinear dynamics (SINDy) modeling procedure to include the effects of exogenous signals and nonlinear trigonometric terms in the library of elements. We show that the resulting framework requires fairly little in terms of data, and is computationally efficient and robust to noise, making it a viable candidate for online identification in response to rapid system changes. The proposed method also shows improved performance over linear data-driven modeling. While the proposed procedure is illustrated on a SG example in a multi-machine benchmark, it is directly applicable to the identification of other system components (e.g., dynamic loads) in large power systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Symbolic Regression for Data-Driven Dynamic Model Refinement in Power Systems
    Saric, Andrija T.
    Saric, Aleksandar A.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2390 - 2402
  • [2] Data-driven identification for nonlinear dynamic systems
    Lyshevski, Sergey Edward
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2024, 44 (02) : 166 - 171
  • [3] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    [J]. MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [4] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    [J]. MRS Bulletin, 2019, 44 : 559 - 564
  • [5] Data-Driven Identification of Nonlinear Power System Dynamics Using Output-Only Measurements
    Sharma, Pranav
    Ajjarapu, Venkataramana
    Vaidya, Umesh
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (05) : 3458 - 3468
  • [6] Data-Driven Control of Nonlinear Systems: Beyond Polynomial Dynamics
    Straesser, Robin
    Berberich, Julian
    Allgoewer, Frank
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4344 - 4351
  • [7] Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4978 - 4985
  • [8] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    [J]. COMPUTERS & STRUCTURES, 2021, 252
  • [9] A symbolic data-driven technique based on evolutionary polynomial regression
    Giustolisi, Orazio
    Savic, Dragan A.
    [J]. JOURNAL OF HYDROINFORMATICS, 2006, 8 (03) : 207 - 222
  • [10] An evaluation of data-driven identification strategies for complex nonlinear dynamic systems
    Brewick, Patrick T.
    Masri, Sami F.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (02) : 1297 - 1318