Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems

被引:3
|
作者
Sivaranjani, S. [1 ]
Agarwal, Etika [2 ,3 ]
Gupta, Vijay [4 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[3] Walmart Global Tech, Bengaluru 560103, Karnataka, India
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Perturbation methods; Integrated circuit modeling; Stability criteria; Data models; System identification; Circuit stability; Standards; Dissipativity; identification; learning; nonlinear systems; passivity; PASSIVITY ENFORCEMENT; MACROMODELS; ALGORITHM; DESIGN;
D O I
10.1109/TAC.2022.3180810
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of identifying a dissipative linear model of an unknown nonlinear system that is known to be dissipative, from time-domain input-output data. We first learn an approximate linear model of the nonlinear system using standard system identification techniques and then perturb the system matrices of the linear model to enforce dissipativity, while closely approximating the dynamical behavior of the nonlinear system. Further, we provide an analytical relationship between the size of the perturbation and the radius in which the dissipativity of the linear model guarantees local dissipativity of the unknown nonlinear system. We demonstrate the application of this identification technique through two examples.
引用
收藏
页码:4978 / 4985
页数:8
相关论文
共 50 条
  • [1] Data-driven Identification of Approximate Passive Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    [J]. LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 338 - 339
  • [2] Data-Driven Identification of Nonlinear Flame Models
    Ghani, Abdulla
    Boxx, Isaac
    Noren, Carrie
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [3] DATA-DRIVEN IDENTIFICATION OF NONLINEAR FLAME MODELS
    Ghani, Abdulla
    Boxx, Isaac
    Noren, Carrie
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXHIBITION, VOL 4A, 2020,
  • [4] Data-driven identification for nonlinear dynamic systems
    Lyshevski, Sergey Edward
    [J]. INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2024, 44 (02) : 166 - 171
  • [5] Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods
    Hao Chen
    [J]. Calcolo, 2023, 60
  • [6] Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods
    Chen, Hao
    [J]. CALCOLO, 2023, 60 (01)
  • [7] Data-driven geometric system identification for shape-underactuated dissipative systems
    Bittner, Brian
    Hatton, Ross L.
    Revzen, Shai
    [J]. BIOINSPIRATION & BIOMIMETICS, 2022, 17 (02)
  • [8] Data-driven fuzzy models for nonlinear identification of a complex heat exchanger
    Habbi, Hacene
    Kidouche, Madjid
    Zelmat, Mimoun
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (03) : 1470 - 1482
  • [9] Data-driven model reduction by moment matching for linear and nonlinear systems
    Scarciotti, Giordano
    Astolfi, Alessandro
    [J]. AUTOMATICA, 2017, 79 : 340 - 351
  • [10] An evaluation of data-driven identification strategies for complex nonlinear dynamic systems
    Brewick, Patrick T.
    Masri, Sami F.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (02) : 1297 - 1318