Data-driven identification for nonlinear dynamic systems

被引:0
|
作者
Lyshevski, Sergey Edward [1 ]
机构
[1] Rochester Inst Technol, Dept Elect & Microelect Engn, Rochester, NY 14623 USA
关键词
dynamic systems; parameter estimation; identification; nonlinear systems;
D O I
10.1504/IJMIC.2024.136630
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For nonlinear dynamic systems, this paper investigates problems of identification and parameter estimation. These problems are critical in aerial, electromechanical, robotic and other systems. Analysis and control of physical systems imply the use of adequate mathematical descriptions, ensuring sufficient fidelity. Particular challenges occur if systems exhibit oscillations, limit cycles and instabilities. We apply multivariate polynomials and model-to-system mismatches measures to solve identification problems during dynamic governance. Physics-consistent nonlinear models are parameterised, truncated and validated using matrix factorisation schemes and algorithms. Heterogeneous measurements adverse the information content and obscure observed data. Singular value decomposition ensures algorithmic convergence and validity. Using simulations and experimental studies, a data-driven identification concept is demonstrated and validated.
引用
收藏
页码:166 / 171
页数:7
相关论文
共 50 条
  • [1] An evaluation of data-driven identification strategies for complex nonlinear dynamic systems
    Brewick, Patrick T.
    Masri, Sami F.
    [J]. NONLINEAR DYNAMICS, 2016, 85 (02) : 1297 - 1318
  • [2] An evaluation of data-driven identification strategies for complex nonlinear dynamic systems
    Patrick T. Brewick
    Sami F. Masri
    [J]. Nonlinear Dynamics, 2016, 85 : 1297 - 1318
  • [3] Online data-driven fuzzy modeling for nonlinear dynamic systems
    Hao, WJ
    Qiang, WY
    Chai, QX
    Tang, JL
    [J]. Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 2634 - 2639
  • [4] Data-driven modeling for the dynamic behavior of nonlinear vibratory systems
    Liu, Huizhen
    Zhao, Chengying
    Huang, Xianzhen
    Yao, Guo
    [J]. NONLINEAR DYNAMICS, 2023, 111 (12) : 10809 - 10834
  • [5] An adaptive subspace data-driven method for nonlinear dynamic systems
    Sun, Chengyuan
    Kang, Haobo
    Ma, Hongjun
    Bai, Hua
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (17): : 13596 - 13623
  • [6] Data-driven modeling for the dynamic behavior of nonlinear vibratory systems
    Huizhen Liu
    Chengying Zhao
    Xianzhen Huang
    Guo Yao
    [J]. Nonlinear Dynamics, 2023, 111 : 10809 - 10834
  • [7] Data-Driven Identification of Dissipative Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (09) : 4978 - 4985
  • [8] Data-driven Symbolic Regression for Identification of Nonlinear Dynamics in Power Systems
    Stankovic, Alex M.
    Saric, Aleksandar A.
    Saric, Andrija T.
    Transtrum, Mark K.
    [J]. 2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [9] Data-driven Identification of Approximate Passive Linear Models for Nonlinear Systems
    Sivaranjani, S.
    Agarwal, Etika
    Gupta, Vijay
    [J]. LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 338 - 339
  • [10] Iterative dynamic linearization and identification of a nonlinear learning controller: A data-driven approach
    Lin, Na
    Chi, Ronghu
    Huang, Biao
    Hou, Zhongsheng
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (13): : 7009 - 7027