A symbolic data-driven technique based on evolutionary polynomial regression

被引:306
|
作者
Giustolisi, Orazio
Savic, Dragan A.
机构
[1] Tech Univ Bari, Fac Engn, Dept Civil & Environm Engn, I-74100 Taranto, Italy
[2] Univ Exeter, Sch Engn Comp Sci & Math, Dept Engn, Ctr Water Syst, Exeter EX4 4QF, Devon, England
关键词
Chezy resistance coefficient; Colebrook-White formula; data-driven modelling; evolutionary computing; regression;
D O I
10.2166/hydro.2006.020b
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes a new hybrid regression method that combines the best features of conventional numerical regression techniques with the genetic programming symbolic regression technique. The key idea is to employ an evolutionary computing methodology to search for a model of the system/process being modelled and to employ parameter estimation to obtain constants using least squares. The new technique, termed Evolutionary Polynomial Regression (EPR) overcomes shortcomings in the GP process, such as computational performance; number of evolutionary parameters to tune and complexity of the symbolic models. Similarly, it alleviates issues arising from numerical regression, including difficulties in using physical insight and overfitting problems. This paper demonstrates that EPR is good, both in interpolating data and in scientific knowledge discovery. As an illustration, EPR is used to identify polynomial formulae with progressively increasing levels of noise, to interpolate the Colebrook-White formula for a pipe resistance coefficient and to discover a formula for a resistance coefficient from experimental data.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 50 条
  • [1] Data-driven discovery of formulas by symbolic regression
    Sun, Sheng
    Ouyang, Runhai
    Zhang, Bochao
    Zhang, Tong-Yi
    [J]. MRS BULLETIN, 2019, 44 (07) : 559 - 564
  • [2] Data-driven discovery of formulas by symbolic regression
    Sheng Sun
    Runhai Ouyang
    Bochao Zhang
    Tong-Yi Zhang
    [J]. MRS Bulletin, 2019, 44 : 559 - 564
  • [3] Study a decay and proton emission based on data-driven symbolic regression *
    Cheng, Junhao
    Wang, Binglin
    Zhang, Wenyu
    Duan, Xiaojun
    Yu, Tongpu
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2024, 304
  • [4] Development of interpretable, data-driven plasticity models with symbolic regression
    Bomarito, G. F.
    Townsend, T. S.
    Stewart, K. M.
    Esham, K., V
    Emery, J. M.
    Hochhalter, J. D.
    [J]. COMPUTERS & STRUCTURES, 2021, 252
  • [5] Data-driven polynomial chaos expansion for machine learning regression
    Torre, Emiliano
    Marelli, Stefano
    Embrechts, Paul
    Sudret, Bruno
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 388 : 601 - 623
  • [6] Data-driven HVAC Control Using Symbolic Regression: Design and Implementation
    Ozawa, Yuki
    Zhao, Dafang
    Watari, Daichi
    Taniguchi, Ittetsu
    Suzuki, Toshihiro
    Shimoda, Yoshiyuki
    Onoye, Takao
    [J]. 2023 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, PESGM, 2023,
  • [7] Symbolic Regression for Data-Driven Dynamic Model Refinement in Power Systems
    Saric, Andrija T.
    Saric, Aleksandar A.
    Transtrum, Mark K.
    Stankovic, Aleksandar M.
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (03) : 2390 - 2402
  • [8] Data-driven Symbolic Regression for Identification of Nonlinear Dynamics in Power Systems
    Stankovic, Alex M.
    Saric, Aleksandar A.
    Saric, Andrija T.
    Transtrum, Mark K.
    [J]. 2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [9] Data-Driven Non-Linear Current Controller Based on Deep Symbolic Regression for SPMSM
    Usama, Muhammad
    Lee, In-Young
    [J]. SENSORS, 2022, 22 (21)
  • [10] Multi-Objective Symbolic Regression for Data-Driven Scoring System Management
    Ferrari, Davide
    Guidetti, Veronica
    Mandreoli, Federica
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 945 - 950