Gate control and amplification of magnetoresistance in a three-terminal device

被引:6
|
作者
Kum, Hyun [1 ]
Jahangir, Shafat [1 ]
Basu, Debashish [1 ]
Saha, Dipankar [2 ]
Bhattacharya, Pallab [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ctr Nanoscale Photon & Spintron, Ann Arbor, MI 48109 USA
[2] Indian Inst Technol, Dept Elect Engn, Ctr Excellence Nanoelect, Bombay 400076, Maharashtra, India
关键词
INJECTION;
D O I
10.1063/1.3652765
中图分类号
O59 [应用物理学];
学科分类号
摘要
Gate control and amplification of magnetoresistance are demonstrated at room temperature in a fully epitaxial three-terminal GaAs-based device. In addition to the two ferromagnetic spin injector and detector electrodes of a MnAs/AlAs/GaAs:Mn/AlAs/MnAs vertical spin valve, a third non-magnetic gate electrode (Ti/Au) is placed directly on top of the heavily p-doped GaAs channel layer. The magnetoresistance of the device can be amplified to reach values as high as 500% at room temperature with the application of a bias to the gate terminal, which modulates the spin selectivity of the tunnel barriers. The experimental results are modeled by solving spin drift-diffusion and tunneling equations self consistently. (C) 2011 American Institute of Physics. [doi:10.1063/13652765]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Gate-tunable superconducting diode effect in a three-terminal Josephson device
    Mohit Gupta
    Gino V. Graziano
    Mihir Pendharkar
    Jason T. Dong
    Connor P. Dempsey
    Chris Palmstrøm
    Vlad S. Pribiag
    [J]. Nature Communications, 14
  • [2] Gate-tunable superconducting diode effect in a three-terminal Josephson device
    Gupta, Mohit
    Graziano, Gino V.
    Pendharkar, Mihir
    Dong, Jason T.
    Dempsey, Connor P.
    Palmstrom, Chris
    Pribiag, Vlad S.
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Three-terminal gated magnetoelectronic device
    Zelakiewicz, S
    Johnson, M
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (17) : 3204 - 3206
  • [4] Gate Controlled Three-Terminal Metal Oxide Memristor
    Herrmann, Eric
    Rush, Andrew
    Bailey, Tony
    Jha, Rashmi
    [J]. IEEE ELECTRON DEVICE LETTERS, 2018, 39 (04) : 500 - 503
  • [5] Spin injection and local magnetoresistance effects in three-terminal devices
    Txoperena, Oihana
    Casanova, Felix
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (13)
  • [6] Random matrix study for a three-terminal chaotic device
    Martinez-Argueello, A. M.
    Castano, E.
    Martinez-Mares, M.
    [J]. SPECIAL TOPICS ON TRANSPORT THEORY: ELECTRONS, WAVES, AND DIFFUSION IN CONFINED SYSTEMS: V LEOPOLDO GARCIA-COLIN MEXICAN MEETING ON MATHEMATICAL AND EXPERIMENTAL PHYSICS, 2014, 1579 : 46 - 51
  • [7] A three-terminal planar selfgating device for nanoelectronic applications
    Müller, T
    Lorke, A
    Do, QT
    Tegude, FJ
    Schuh, D
    Wegscheider, W
    [J]. SOLID-STATE ELECTRONICS, 2005, 49 (12) : 1990 - 1995
  • [8] A Superconducting-Nanowire Three-Terminal Electrothermal Device
    McCaughan, Adam N.
    Berggren, Karl K.
    [J]. NANO LETTERS, 2014, 14 (10) : 5748 - 5753
  • [9] Transport studies in a gate-tunable three-terminal Josephson junction
    Graziano, Gino, V
    Lee, Joon Sue
    Pendharkar, Mihir
    Palmstrom, Chris
    Pribiag, Vlad S.
    [J]. PHYSICAL REVIEW B, 2020, 101 (05)
  • [10] Unimolecular amplifier: principles of a three-terminal device with power gain
    Toher, Cormac
    Nozaki, Daijiro
    Cuniberti, Gianaurelio
    Metzger, Robert M.
    [J]. NANOSCALE, 2013, 5 (15) : 6975 - 6984