Unimolecular amplifier: principles of a three-terminal device with power gain

被引:7
|
作者
Toher, Cormac [1 ]
Nozaki, Daijiro [1 ]
Cuniberti, Gianaurelio [1 ,2 ]
Metzger, Robert M. [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst Mat Sci, Max Bergmann Ctr Biomat, D-01062 Dresden, Germany
[2] Univ Alabama, Lab Mol Elect, Dept Chem, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; ELECTRON; RECTIFICATION; CONDUCTANCE; POTENTIALS;
D O I
10.1039/c3nr00956d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A single molecule composed of three linked moieties can function as an amplifier of electrical current, when certain conditions are met by the molecular orbitals of the three component parts. This device should exhibit power gain at appropriate voltages. In this work, we will explain a plausible mechanism by which this device should work, and present its operating characteristics. In particular, we find that a fundamental requirement for current amplification is to have the LUMO of the central moiety more strongly coupled to a control electrode than it is to the other orbitals in the molecule, while the HOMO of this moiety should be more strongly coupled to the orbitals in the other moieties than it is to the control electrode.
引用
收藏
页码:6975 / 6984
页数:10
相关论文
共 50 条
  • [1] Superconductive Three-Terminal Amplifier/Discriminator
    Quaranta, Orlando
    Marchetti, Stefania
    Martucciello, Nadia
    Pagano, Sergio
    Ejrnaes, Mikkel
    Cristiano, Roberto
    Nappi, Ciro
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) : 367 - 370
  • [2] Three-terminal gated magnetoelectronic device
    Zelakiewicz, S
    Johnson, M
    [J]. APPLIED PHYSICS LETTERS, 2002, 80 (17) : 3204 - 3206
  • [3] Operating principles of three-terminal solar cells
    Warren, Emily
    Rienaecker, Michael
    Schnabel, Manuel
    Deceglie, Michael
    Peibst, Robby
    Tamboli, Adele
    Stradins, Paul
    [J]. 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 2648 - 2650
  • [4] Power gain up to gigahertz frequencies in three-terminal nanojunctions at room temperature
    Spanheimer, D.
    Mueller, C. R.
    Heinrich, J.
    Hoefling, S.
    Worschech, L.
    Forchel, A.
    [J]. APPLIED PHYSICS LETTERS, 2009, 95 (10)
  • [5] A THREE-TERMINAL SEMICONDUCTOR-SUPERCONDUCTOR TRANSIMPEDANCE AMPLIFIER
    Pham, T.
    Leung, M.
    Dalrymple, B.
    Abelson, L.
    Spargo, J.
    Ou, S.
    Chan, H.
    Silver, A.
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1993, 3 (01) : 1964 - 1967
  • [6] A possible three-terminal amplifier device in the tetrahertz frequency range using photon-assisted tunneling
    Asada, M
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1996, 35 (6A): : L685 - L687
  • [7] Gate control and amplification of magnetoresistance in a three-terminal device
    Kum, Hyun
    Jahangir, Shafat
    Basu, Debashish
    Saha, Dipankar
    Bhattacharya, Pallab
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (15)
  • [8] Random matrix study for a three-terminal chaotic device
    Martinez-Argueello, A. M.
    Castano, E.
    Martinez-Mares, M.
    [J]. SPECIAL TOPICS ON TRANSPORT THEORY: ELECTRONS, WAVES, AND DIFFUSION IN CONFINED SYSTEMS: V LEOPOLDO GARCIA-COLIN MEXICAN MEETING ON MATHEMATICAL AND EXPERIMENTAL PHYSICS, 2014, 1579 : 46 - 51
  • [9] A three-terminal planar selfgating device for nanoelectronic applications
    Müller, T
    Lorke, A
    Do, QT
    Tegude, FJ
    Schuh, D
    Wegscheider, W
    [J]. SOLID-STATE ELECTRONICS, 2005, 49 (12) : 1990 - 1995
  • [10] A Superconducting-Nanowire Three-Terminal Electrothermal Device
    McCaughan, Adam N.
    Berggren, Karl K.
    [J]. NANO LETTERS, 2014, 14 (10) : 5748 - 5753