SHARP UPPERBOUNDS FOR THE NUMBER OF LARGE AMPLITUDE LIMIT CYCLES IN POLYNOMIAL LIENARD SYSTEMS

被引:3
|
作者
Dumortier, Freddy [1 ]
机构
[1] Univ Hasselt, B-3590 Diepenbeek, Belgium
关键词
Lienard equation; Limit cycle; Heteroclinic connection; Cyclicity; EQUATIONS;
D O I
10.3934/dcds.2012.32.1465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [1] and [2] upperbounds have been given for the number of large amplitude limit cycles in polynomial Lienard systems of type (m, n) with m < 2n + 1, m and n odd. In the current paper we improve the upperbounds from [1] and [2] by one unity, obtaining sharp results. We therefore introduce the "method of cloning variables" that might be useful in other cyclicity problems.
引用
收藏
页码:1465 / 1479
页数:15
相关论文
共 50 条
  • [21] On The Maximum Number Of Limit Cycles Of Generalized Polynomial Lienard Differential Systems Via Averaging Theory
    Boulfoul, Amel
    Mellahi, Nawal
    APPLIED MATHEMATICS E-NOTES, 2020, 20 : 167 - 187
  • [22] An upper bound for the amplitude of limit cycles in Lienard systems with symmetry
    Yang Lijun
    Zeng Xianwu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (08) : 2701 - 2710
  • [23] Limit cycles of polynomial Lienard systems via the averaging method
    Shi, Juanrong
    Wang, Weixia
    Zhang, Xiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 650 - 667
  • [24] Number of limit cycles of the Lienard equation
    Giacomini, H
    Neukirch, S
    PHYSICAL REVIEW E, 1997, 56 (04): : 3809 - 3813
  • [25] Bounding the number of limit cycles for a polynomial Lienard system by using regular chains
    Sun, Xianbo
    Huang, Wentao
    JOURNAL OF SYMBOLIC COMPUTATION, 2017, 79 : 197 - 210
  • [26] Limit cycles of Lienard systems
    Amar, M
    Sabrina, B
    PROCEEDINGS OF DYNAMIC SYSTEMS AND APPLICATIONS, VOL 4, 2004, : 297 - 301
  • [27] On the number of limit cycles in piecewise-linear Lienard systems
    Tonnelier, A
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (04): : 1417 - 1422
  • [28] SMALL-AMPLITUDE LIMIT-CYCLES OF CERTAIN LIENARD SYSTEMS
    LLOYD, NG
    LYNCH, S
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 418 (1854): : 199 - 208
  • [29] The number of limit cycles for a family of polynomial systems
    Xiang, GH
    Han, MA
    Zhang, TH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (11-12) : 1669 - 1678
  • [30] Small-amplitude limit cycles in Lienard systems via multiplicity
    Gasull, A
    Torregrosa, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) : 186 - 211