On the number of limit cycles in piecewise-linear Lienard systems

被引:17
|
作者
Tonnelier, A [1 ]
机构
[1] INRIA Lorraine, Cortex Project, F-54602 Villers Les Nancy, France
来源
关键词
limit cycles; piecewise-linear systems;
D O I
10.1142/S0218127405012624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [Tonnelier, 2002] we conjectured that a Lienard system of the form x = p(x) - y, y = x where p is piecewise linear on n + 1 intervals has up to 2n, limit cycles. We construct here a general class of functions p satisfying this conjecture. Limit cycles are obtained from the bifurcation of the linear center.
引用
收藏
页码:1417 / 1422
页数:6
相关论文
共 50 条
  • [1] Two Limit Cycles in Lienard Piecewise Linear Differential Systems
    Llibre, Jaume
    Ponce, Enrique
    Valls, Claudia
    JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (04) : 1499 - 1522
  • [2] Canard Limit Cycles for Piecewise Linear Lienard Systems with Three Zones
    Li, Shimin
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (15):
  • [3] On the Number of Limit Cycles by Perturbing a Piecewise Smooth Lienard Model
    Sheng, Lijuan
    Han, Maoan
    Romanovsky, Valery
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10):
  • [4] Limit Cycles of a Class of Piecewise Smooth Lienard Systems
    Sheng, Lijuan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (01):
  • [5] On the Number of Hyperelliptic Limit Cycles of Lienard Systems
    Qian, Xinjie
    Yang, Jiazhong
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (01)
  • [6] On the number of limit cycles of polynomial Lienard systems
    Han, Maoan
    Romanovski, Valery G.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (03) : 1655 - 1668
  • [7] ON THE NUMBER OF LIMIT CYCLES IN GENERAL PLANAR PIECEWISE LINEAR SYSTEMS
    Huan, Song-Mei
    Yang, Xiao-Song
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2147 - 2164
  • [8] Piecewise linear feedback systems with arbitrary number of limit cycles
    Llibre, J
    Ponce, E
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (04): : 895 - 904
  • [9] NUMBER OF LIMIT CYCLES OF SOME POLYNOMIAL LIENARD SYSTEMS
    Xu, Weijiao
    Li, Cuiping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (04):
  • [10] Maximum number of limit cycles for certain piecewise linear dynamical systems
    Llibre, Jaume
    Novaes, Douglas D.
    Teixeira, Marco A.
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1159 - 1175