On the number of limit cycles in piecewise-linear Lienard systems

被引:17
|
作者
Tonnelier, A [1 ]
机构
[1] INRIA Lorraine, Cortex Project, F-54602 Villers Les Nancy, France
来源
关键词
limit cycles; piecewise-linear systems;
D O I
10.1142/S0218127405012624
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper [Tonnelier, 2002] we conjectured that a Lienard system of the form x = p(x) - y, y = x where p is piecewise linear on n + 1 intervals has up to 2n, limit cycles. We construct here a general class of functions p satisfying this conjecture. Limit cycles are obtained from the bifurcation of the linear center.
引用
收藏
页码:1417 / 1422
页数:6
相关论文
共 50 条
  • [21] ON THE MAXIMUM NUMBER OF LIMIT CYCLES OF A CLASS OF GENERALIZED LIENARD DIFFERENTIAL SYSTEMS
    Alavez-Ramirez, Justino
    Ble, Gamaliel
    Lopez-Lopez, Jorge
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (03):
  • [22] How to estimate the number of limit cycles in Lienard systems with a small parameter
    L. A. Cherkas
    O. N. Malysheva
    Differential Equations, 2011, 47 : 224 - 230
  • [23] How to estimate the number of limit cycles in Lienard systems with a small parameter
    Cherkas, L. A.
    Malysheva, O. N.
    DIFFERENTIAL EQUATIONS, 2011, 47 (02) : 224 - 230
  • [24] MAXIMUM NUMBER OF LIMIT CYCLES FOR GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Berbache, Aziza
    Bendjeddou, Ahmed
    Benadouane, Sabah
    MATHEMATICA BOHEMICA, 2021, 146 (02): : 151 - 165
  • [25] LIMIT CYCLES OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Cardin, Pedro Toniol
    De Carvalho, Tiago
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (11): : 3181 - 3194
  • [26] Algebraic Limit Cycles in Piecewise Linear Differential Systems
    Buzzi, Claudio A.
    Gasull, Armengol
    Torregrosa, Joan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (03):
  • [27] Regions of stability for limit cycles of piecewise linear systems
    Gonçalves, JM
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 651 - 656
  • [28] Limit cycles in planar continuous piecewise linear systems
    Chen, Hebai
    Li, Denghui
    Xie, Jianhua
    Yue, Yuan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 47 : 438 - 454
  • [29] LIMIT CYCLES FOR PIECEWISE LINEAR SYSTEMS WITH IMPROPER NODE
    Zhao, Hefei
    Wu, Kuilin
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2720 - 2738
  • [30] On the Number of Limit Cycles for Discontinuous Generalized Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Shi, Junping
    Sun, Jitao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):