SHARP UPPERBOUNDS FOR THE NUMBER OF LARGE AMPLITUDE LIMIT CYCLES IN POLYNOMIAL LIENARD SYSTEMS

被引:3
|
作者
Dumortier, Freddy [1 ]
机构
[1] Univ Hasselt, B-3590 Diepenbeek, Belgium
关键词
Lienard equation; Limit cycle; Heteroclinic connection; Cyclicity; EQUATIONS;
D O I
10.3934/dcds.2012.32.1465
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [1] and [2] upperbounds have been given for the number of large amplitude limit cycles in polynomial Lienard systems of type (m, n) with m < 2n + 1, m and n odd. In the current paper we improve the upperbounds from [1] and [2] by one unity, obtaining sharp results. We therefore introduce the "method of cloning variables" that might be useful in other cyclicity problems.
引用
收藏
页码:1465 / 1479
页数:15
相关论文
共 50 条
  • [41] Approximating the amplitude and form of limit cycles in the weakly nonlinear regime of Lienard systems
    Lopez, J. L.
    Lopez-Ruiz, R.
    CHAOS SOLITONS & FRACTALS, 2007, 34 (04) : 1307 - 1317
  • [42] Small-amplitude limit cycles of some Lienard-type systems
    Jiang, Jiao
    Han, Maoan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : 6373 - 6377
  • [43] On the number of limit cycles of a class of polynomial differential systems
    Llibre, Jaume
    Valls, Claudia
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 468 (2144): : 2347 - 2360
  • [44] On the hyperelliptic limit cycles of Lienard systems
    Liu, Changjian
    Chen, Guoting
    Yang, Jiazhong
    NONLINEARITY, 2012, 25 (06) : 1601 - 1611
  • [45] Limit cycles of generalized Lienard systems
    Bouattia, Y.
    Makhlouf, A.
    MATHEMATICAL MODELS IN ENGINEERING, BIOLOGY AND MEDICINE, 2009, 1124 : 60 - 70
  • [46] The number of limit cycles of a class of polynomial differential systems
    Yao, Haiyan
    Han, Maoan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 341 - 357
  • [47] On the Number of Limit Cycles for Piecewise Polynomial Holomorphic Systems
    Gasull, Armengol
    Rondón, Gabriel
    da Silva, Paulo Ricardo
    SIAM Journal on Applied Dynamical Systems, 2024, 23 (03): : 2593 - 2622
  • [48] The Maximal Number of Limit Cycles in a Family of Polynomial Systems
    Xiang, Guanghui
    Hu, Zhaoping
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (03):
  • [49] Limit cycles in Lienard systems with saturation
    Lathuiliere, Thomas
    Valmorbida, Giorgio
    Panteley, Elena
    IFAC PAPERSONLINE, 2018, 51 (33): : 127 - 131
  • [50] Limit cycles in generalized Lienard systems
    Yu, P.
    Han, M.
    CHAOS SOLITONS & FRACTALS, 2006, 30 (05) : 1048 - 1068