Voronovskaja's theorem revisited

被引:17
|
作者
Tachev, Gancho T. [1 ]
机构
[1] Univ Architecture Civil Engn & Geodesy, Dept Math, BG-1046 Sofia, Bulgaria
关键词
degree of approximation; moduli of continuity omega(f; averaged moduli; Ditzian-Totik moduli; Bernstein operator; Voronovskaja's theorem;
D O I
10.1016/j.jmaa.2008.01.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条
  • [21] The Voronovskaja type theorem for an extension of Kantorovich operators
    Miclaus, Dan
    Pop, Ovidiu T.
    Barbosu, Dan
    [J]. ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2010, 37 (04): : 29 - 36
  • [22] Lovelock's theorem revisited
    Navarro, Alberto
    Navarro, Jose
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) : 1950 - 1956
  • [23] Kellerer's Theorem Revisited
    Hirsch, Francis
    Roynette, Bernard
    Yor, Marc
    [J]. ASYMPTOTIC LAWS AND METHODS IN STOCHASTICS, 2015, : 347 - 363
  • [24] Mitchell's theorem revisited
    Gilton, Thomas
    Krueger, John
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (05) : 922 - 1016
  • [25] Redheffer's theorem revisited
    Vlad Ionescu
    [J]. Integral Equations and Operator Theory, 1999, 34 : 45 - 55
  • [26] Kuzmin's theorem revisited
    Schweiger, F
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 557 - 565
  • [27] Ehrenfest's Theorem Revisited
    Arodz, Henryk
    [J]. ZAGADNIENIA FILOZOFICZNE W NAUCE-PHILOSOPHICAL PROBLEMS IN SCIENCE, 2019, (66): : 73 - 94
  • [28] Miller's theorem revisited
    Roy, SCD
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2000, 19 (06) : 487 - 499
  • [29] ALEXANDROV'S THEOREM REVISITED
    Delgadino, Matias Gonzalo
    Maggi, Francesco
    [J]. ANALYSIS & PDE, 2019, 12 (06): : 1613 - 1642
  • [30] Cox's theorem revisited
    Halpern, JY
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 1999, 11 : 429 - 435