Lovelock's theorem revisited

被引:17
|
作者
Navarro, Alberto [1 ]
Navarro, Jose [1 ]
机构
[1] Univ Extremadura, Dept Math, E-06071 Badajoz, Spain
关键词
Natural bundles; Natural tensors; Divergence-free tensors; Lovelock's gravity; EINSTEIN TENSOR;
D O I
10.1016/j.geomphys.2011.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, g) be an arbitrary pseudo-Riemannian manifold. A celebrated result by D. Lovelock gives an explicit description of all second-order natural (0,2)-tensors on X that are symmetric and divergence-free. Apart from the dual metric, the Einstein tensor of g is the simplest example. In this paper, we give a short and self-contained proof of this theorem, simplifying the existing arguments by formalizing the notion of derivative of a natural tensor. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1950 / 1956
页数:7
相关论文
共 50 条
  • [1] Birkhoff's theorem in Lovelock gravity
    Zegers, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (07)
  • [2] Shock waves and Birkhoff's theorem in Lovelock gravity
    Gravanis, E.
    [J]. PHYSICAL REVIEW D, 2010, 82 (10):
  • [3] Birkhoff's theorem in Lovelock gravity for general base manifolds
    Ray, Sourya
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (19)
  • [4] Kellerer's Theorem Revisited
    Hirsch, Francis
    Roynette, Bernard
    Yor, Marc
    [J]. ASYMPTOTIC LAWS AND METHODS IN STOCHASTICS, 2015, : 347 - 363
  • [5] Mitchell's theorem revisited
    Gilton, Thomas
    Krueger, John
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (05) : 922 - 1016
  • [6] Redheffer's theorem revisited
    Vlad Ionescu
    [J]. Integral Equations and Operator Theory, 1999, 34 : 45 - 55
  • [7] Kuzmin's theorem revisited
    Schweiger, F
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 557 - 565
  • [8] Ehrenfest's Theorem Revisited
    Arodz, Henryk
    [J]. ZAGADNIENIA FILOZOFICZNE W NAUCE-PHILOSOPHICAL PROBLEMS IN SCIENCE, 2019, (66): : 73 - 94
  • [9] Voronovskaja's theorem revisited
    Tachev, Gancho T.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 399 - 404
  • [10] Miller's theorem revisited
    Roy, SCD
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2000, 19 (06) : 487 - 499