Natural bundles;
Natural tensors;
Divergence-free tensors;
Lovelock's gravity;
EINSTEIN TENSOR;
D O I:
10.1016/j.geomphys.2011.05.004
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let (X, g) be an arbitrary pseudo-Riemannian manifold. A celebrated result by D. Lovelock gives an explicit description of all second-order natural (0,2)-tensors on X that are symmetric and divergence-free. Apart from the dual metric, the Einstein tensor of g is the simplest example. In this paper, we give a short and self-contained proof of this theorem, simplifying the existing arguments by formalizing the notion of derivative of a natural tensor. (C) 2011 Elsevier B.V. All rights reserved.
机构:
Univ Evry Val Essonne, Lab Anal & Probabil, 23 Blvd France, F-91037 Evry, FranceUniv Evry Val Essonne, Lab Anal & Probabil, 23 Blvd France, F-91037 Evry, France
Hirsch, Francis
Roynette, Bernard
论文数: 0引用数: 0
h-index: 0
机构:
Univ Henri Poincare, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, FranceUniv Evry Val Essonne, Lab Anal & Probabil, 23 Blvd France, F-91037 Evry, France
Roynette, Bernard
Yor, Marc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 06, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
Univ Paris 07, Lab Probabil & Modeles Aleatoires, F-75252 Paris 05, France
Inst Univ France, Paris, FranceUniv Evry Val Essonne, Lab Anal & Probabil, 23 Blvd France, F-91037 Evry, France
Yor, Marc
[J].
ASYMPTOTIC LAWS AND METHODS IN STOCHASTICS,
2015,
: 347
-
363
机构:
Univ Calif Los Angeles, Dept Math, Box 951555, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Math, Box 951555, Los Angeles, CA 90095 USA
Gilton, Thomas
Krueger, John
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Texas, Dept Math, 1155 Union Circle 311430, Denton, TX 76203 USAUniv Calif Los Angeles, Dept Math, Box 951555, Los Angeles, CA 90095 USA