Lovelock's theorem revisited

被引:17
|
作者
Navarro, Alberto [1 ]
Navarro, Jose [1 ]
机构
[1] Univ Extremadura, Dept Math, E-06071 Badajoz, Spain
关键词
Natural bundles; Natural tensors; Divergence-free tensors; Lovelock's gravity; EINSTEIN TENSOR;
D O I
10.1016/j.geomphys.2011.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (X, g) be an arbitrary pseudo-Riemannian manifold. A celebrated result by D. Lovelock gives an explicit description of all second-order natural (0,2)-tensors on X that are symmetric and divergence-free. Apart from the dual metric, the Einstein tensor of g is the simplest example. In this paper, we give a short and self-contained proof of this theorem, simplifying the existing arguments by formalizing the notion of derivative of a natural tensor. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1950 / 1956
页数:7
相关论文
共 50 条
  • [31] WARING'S THEOREM REVISITED
    Rojas, Andres
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 979 - 1003
  • [32] Gull's Theorem Revisited
    Gill, Richard D.
    [J]. ENTROPY, 2022, 24 (05)
  • [33] Josephy's Theorem, Revisited
    Bugajewska, Daria
    Kasprzak, Piotr
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (06)
  • [34] Hall's theorem revisited
    Sun, ZW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) : 3129 - 3131
  • [35] Wigner's theorem revisited
    Maksa, Gyula
    Pales, Zsolt
    [J]. PUBLICATIONES MATHEMATICAE DEBRECEN, 2012, 81 (1-2): : 243 - 249
  • [36] Keller's theorem revisited
    Ortiz, Guillermo P.
    Mochan, W. Luis
    [J]. NEW JOURNAL OF PHYSICS, 2018, 20
  • [37] Stanley's shuffling theorem revisited
    Stadler, JD
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (01) : 176 - 187
  • [38] von Neumann’s Theorem Revisited
    Pablo Acuña
    [J]. Foundations of Physics, 2021, 51
  • [39] Rabin's calibration theorem revisited
    Balter, Anne G.
    Chau, Ki Wai
    Schweizer, Nikolaus
    [J]. ECONOMICS LETTERS, 2022, 210
  • [40] Von Staudt’s theorem revisited
    Hans Havlicek
    [J]. Aequationes mathematicae, 2015, 89 : 459 - 472