Voronovskaja's theorem revisited

被引:17
|
作者
Tachev, Gancho T. [1 ]
机构
[1] Univ Architecture Civil Engn & Geodesy, Dept Math, BG-1046 Sofia, Bulgaria
关键词
degree of approximation; moduli of continuity omega(f; averaged moduli; Ditzian-Totik moduli; Bernstein operator; Voronovskaja's theorem;
D O I
10.1016/j.jmaa.2008.01.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条
  • [1] VORONOVSKAJA'S THEOREM FOR SCHOENBERG OPERATOR
    Tachev, Gancho
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (01): : 49 - 59
  • [2] A Quantitative Variant of Voronovskaja's Theorem
    Gonska, Heiner
    Tachev, Gancho
    [J]. RESULTS IN MATHEMATICS, 2009, 53 (3-4) : 287 - 294
  • [3] New estimates in Voronovskaja's theorem
    Tachev, Gancho
    [J]. NUMERICAL ALGORITHMS, 2012, 59 (01) : 119 - 129
  • [4] A Quantitative Variant of Voronovskaja’s Theorem
    Heiner Gonska
    Gancho Tachev
    [J]. Results in Mathematics, 2009, 53 : 287 - 294
  • [5] ON THE DEGREE OF APPROXIMATION IN VORONOVSKAJA'S THEOREM
    Gonska, Heiner
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (03): : 103 - 115
  • [6] New estimates in Voronovskaja’s theorem
    Gancho Tachev
    [J]. Numerical Algorithms, 2012, 59 : 119 - 129
  • [7] Voronovskaja's theorem for functions with exponential growth
    Tachev, Gancho
    Gupta, Vijay
    Aral, Ali
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2020, 27 (03) : 459 - 468
  • [8] Differentiated Generalized Voronovskaja's Theorem in Compact Disks
    Gal, Sorin G.
    [J]. RESULTS IN MATHEMATICS, 2012, 61 (3-4) : 347 - 353
  • [9] THE GENERALIZATION OF VORONOVSKAJA'S THEOREM FOR A CLASS OF BIVARIATE OPERATORS
    Pop, Ovidiu T.
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (02): : 85 - 107
  • [10] Differentiated Generalized Voronovskaja’s Theorem in Compact Disks
    Sorin G. Gal
    [J]. Results in Mathematics, 2012, 61 : 347 - 353