A Quantitative Variant of Voronovskaja’s Theorem

被引:1
|
作者
Heiner Gonska
Gancho Tachev
机构
[1] University of Duisburg-Essen,Department of Mathematics
[2] University of Architecture,Civil Engineering and Geodesy, Department of Mathematics
来源
Results in Mathematics | 2009年 / 53卷
关键词
41A10; 41A17; 41A25; 41A36; Bernstein polynomials; quantitative Voronovskaja theorem; K-functional; least concave majorant; modulus of continuity; Ditzian–Totik modulus;
D O I
暂无
中图分类号
学科分类号
摘要
A general quantitative Voronovskaja theorem for Bernstein operators is given which bridges the gap between such estimates in terms of the least concave majorant of the first order modulus of continuity and the first order Ditzian–Totik modulus with classical weight \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi(x) = \sqrt {x(1 - x)}$$\end{document}.
引用
收藏
页码:287 / 294
页数:7
相关论文
共 50 条