Redheffer's theorem revisited

被引:0
|
作者
Vlad Ionescu
机构
[1] University Polytechnica Bucharest,Faculty of Automatic Control and Computers
来源
关键词
93 C 35; 93 C 50; 93 C 55;
D O I
暂无
中图分类号
学科分类号
摘要
Based on the Ben Artzi-Gohberg result concerning the equivalence between the invertibility of theL2-operator\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(Tx)(t) = \dot x(t) - A(t)x(t)$$ \end{document} and the exponential dichotomic evolution defined byA(t), the time-varying counterpart of the Redheffer theorem is considered under relaxed conditions.
引用
收藏
页码:45 / 55
页数:10
相关论文
共 50 条
  • [1] Redheffer's theorem revisited
    Ionescu, V
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1999, 34 (01) : 45 - 55
  • [2] A State-Space Revisit to Redheffer's Theorem
    Cheng, Yiping
    Liu, Ze
    [J]. 2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 35 - 38
  • [3] An extension of Redheffer's theorem for time-varying systems
    Ionescu, V
    Oara, C
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2522 - 2523
  • [4] On a theorem of Redheffer concerning diagonal stability
    Shorten, Robert
    Narendra, Kumpati S.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (12) : 2317 - 2329
  • [5] Lovelock's theorem revisited
    Navarro, Alberto
    Navarro, Jose
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) : 1950 - 1956
  • [6] Kellerer's Theorem Revisited
    Hirsch, Francis
    Roynette, Bernard
    Yor, Marc
    [J]. ASYMPTOTIC LAWS AND METHODS IN STOCHASTICS, 2015, : 347 - 363
  • [7] Mitchell's theorem revisited
    Gilton, Thomas
    Krueger, John
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (05) : 922 - 1016
  • [8] Kuzmin's theorem revisited
    Schweiger, F
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 : 557 - 565
  • [9] Ehrenfest's Theorem Revisited
    Arodz, Henryk
    [J]. ZAGADNIENIA FILOZOFICZNE W NAUCE-PHILOSOPHICAL PROBLEMS IN SCIENCE, 2019, (66): : 73 - 94
  • [10] Voronovskaja's theorem revisited
    Tachev, Gancho T.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 343 (01) : 399 - 404