Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization

被引:5
|
作者
Ghaffari-Hadigheh, Alireza [1 ]
Ghaffari-Hadigheh, Habib [2 ]
Terlaky, Tamas [3 ]
机构
[1] Azarbaijan Univ Tarbiat Moallem, Dept Math, Tabriz, Iran
[2] Payame Noor Univ, Dept Math, Shabestar, Iran
[3] McMaster Univ, Dept Comp & Software, Sch Computat Engn & Sci, Hamilton, ON, Canada
关键词
linear optimization; bi-parametric sensitivity analysis; optimal partition; invariancy region; optimal value function;
D O I
10.1007/s10100-007-0054-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In bi-parametric linear optimization (LO), perturbation occurs in both the right-hand-side and the objective function data with different parameters. In this paper, the bi-parametric LO problem is considered and we are interested in identifying the regions where the optimal partitions are invariant. These regions are referred to as invariancy regions. It is proved that invariancy regions are separated by vertical and horizontal lines and generate a mesh-like area. It is proved that the boundaries of these regions can be identified in polynomial time. The behavior of the optimal value function on these regions is investigated too.
引用
收藏
页码:215 / 238
页数:24
相关论文
共 50 条
  • [41] Novel radiomic analysis on bi-parametric MRI for characterizing differences between MR non-visible and visible clinically significant prostate cancer
    Li, Lin
    Shiradkar, Rakesh
    Tirumani, Sree Harsha
    Bittencourt, Leonardo Kayat
    Fu, Pingfu
    Mahran, Amr
    Buzzy, Christina
    Stricker, Phillip D.
    Rastinehad, Ardeshir R.
    Magi-Galluzzi, Cristina
    Ponsky, Lee
    Klein, Eric
    Purysko, Andrei S.
    Madabhushi, Anant
    EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2023, 10
  • [42] Application of the classical implicit function theorem in sensitivity analysis of parametric optimal control
    Malanowski, K
    CONTROL AND CYBERNETICS, 1998, 27 (03): : 335 - 352
  • [43] A-optimal designs for non-parametric symmetrical global sensitivity analysis
    Chen, Xueping
    Gai, Yujie
    Wang, Xiaodi
    METRIKA, 2023, 86 (02) : 219 - 237
  • [44] A-optimal designs for non-parametric symmetrical global sensitivity analysis
    Xueping Chen
    Yujie Gai
    Xiaodi Wang
    Metrika, 2023, 86 : 219 - 237
  • [45] FLOWSHEET OPTIMIZATION AND OPTIMAL SENSITIVITY ANALYSIS USING ANALYTICAL DERIVATIVES
    WOLBERT, D
    JOULIA, X
    KOEHRET, B
    BIEGLER, LT
    COMPUTERS & CHEMICAL ENGINEERING, 1994, 18 (11-12) : 1083 - 1095
  • [46] Bi-Parametric Magnetic Resonance Imaging Analysis of Biochemical Recurrence of Prostate Cancer after Radical Surgery and Its Predictive Value: A Retrospective Study
    Yu, Xiang
    Wu, Jialing
    Li, Jianhao
    Ao, Jiangpeng
    Du, Feizhou
    Jiang, Rui
    ARCHIVOS ESPANOLES DE UROLOGIA, 2024, 77 (05): : 598 - 604
  • [47] Sensitivity analysis and optimization for non-linear structural response
    Schwarz, S
    Ramm, E
    ENGINEERING COMPUTATIONS, 2001, 18 (3-4) : 610 - 641
  • [48] Sensitivity analysis in linear optimization: Invariant support set intervals
    Hadigheh, AG
    Terlaky, T
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 169 (03) : 1158 - 1175
  • [49] Sensitivity analysis and optimization of a standing wave ultrasonic linear motor
    Fernandez, Jose M.
    Perriard, Yves
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2006, 53 (07) : 1352 - 1361
  • [50] Sensitivity Analysis of the Cost Coefficients in Multiobjective Integer Linear Optimization
    Andersen, Kim Allan
    Boomsma, Trine Krogh
    Efkes, Britta
    Forget, Nicolas
    MANAGEMENT SCIENCE, 2024,