Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization

被引:5
|
作者
Ghaffari-Hadigheh, Alireza [1 ]
Ghaffari-Hadigheh, Habib [2 ]
Terlaky, Tamas [3 ]
机构
[1] Azarbaijan Univ Tarbiat Moallem, Dept Math, Tabriz, Iran
[2] Payame Noor Univ, Dept Math, Shabestar, Iran
[3] McMaster Univ, Dept Comp & Software, Sch Computat Engn & Sci, Hamilton, ON, Canada
关键词
linear optimization; bi-parametric sensitivity analysis; optimal partition; invariancy region; optimal value function;
D O I
10.1007/s10100-007-0054-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In bi-parametric linear optimization (LO), perturbation occurs in both the right-hand-side and the objective function data with different parameters. In this paper, the bi-parametric LO problem is considered and we are interested in identifying the regions where the optimal partitions are invariant. These regions are referred to as invariancy regions. It is proved that invariancy regions are separated by vertical and horizontal lines and generate a mesh-like area. It is proved that the boundaries of these regions can be identified in polynomial time. The behavior of the optimal value function on these regions is investigated too.
引用
收藏
页码:215 / 238
页数:24
相关论文
共 50 条
  • [21] Sensitivity Analysis in Parametric Convex Vector Optimization
    An, Duong Thi Viet
    Tung, Le Thanh
    SET-VALUED AND VARIATIONAL ANALYSIS, 2024, 32 (04)
  • [22] Parametric Sensitivity Analysis of cOptBees Optimal Clustering Algorithm
    Ferreira Cruz, Davila Patricia
    Maia, Renato Dourado
    de Castro, Leandro Nunes
    2014 14TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA 2014), 2014,
  • [23] Parametric sensitivity analysis of linear programming with fuzzy variables
    Yang, Yan
    Jia, Yan-lin
    Zhong, Yi-hua
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 33 (01) : 145 - 158
  • [24] A NOTE ON LOCAL SENSITIVITY ANALYSIS FOR PARAMETRIC OPTIMIZATION PROBLEM
    Yang, Liu
    Chen, Yanping
    Tong, Xiaojiao
    PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (01): : 185 - 195
  • [25] Analysis of optimal bolometer sensitivity with linear approximation
    Shie, JS
    Chen, YM
    Sheen, CS
    INFRARED DETECTORS AND FOCAL PLANE ARRAYS IV, 1996, 2746 : 113 - 121
  • [26] THE USE OF THE OPTIMAL PARTITION IN A LINEAR-PROGRAMMING SOLUTION FOR POSTOPTIMAL ANALYSIS
    GREENBERG, HJ
    OPERATIONS RESEARCH LETTERS, 1994, 15 (04) : 179 - 185
  • [27] Evaluating the sensitivity of deep learning to inter-reader variations in lesion delineations on bi-parametric MRI in identifying clinically significant prostate cancer
    Roge, Ansh
    Hiremath, Amogh
    Sobota, Michael
    Tirumani, Sree Harsha
    Bittencourt, Leonardo Kayat
    Ream, Justin
    Ward, Ryan
    Olaniyan, Halimat
    Verma, Sadhna
    Purysko, Andrei
    Madabhushi, Anant
    Shiradkar, Rakesh
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [28] Robust sensitivity analysis of the optimal value of linear programming
    Xu, Guanglin
    Burer, Samuel
    OPTIMIZATION METHODS & SOFTWARE, 2017, 32 (06): : 1187 - 1205
  • [29] Sensitivity analysis for solutions of a parametric optimal control problem of a descriptor system
    Kostyukova, OI
    JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2002, 41 (01) : 45 - 56
  • [30] Parametric sensitivity analysis:: A case study in optimal control of flight dynamics
    Büskens, C
    Chudej, K
    SYSTEM MODELING AND OPTIMIZATION XX, 2003, 130 : 189 - 197