A-optimal designs for non-parametric symmetrical global sensitivity analysis

被引:0
|
作者
Chen, Xueping [1 ]
Gai, Yujie [2 ]
Wang, Xiaodi [2 ]
机构
[1] Jiangsu Univ Technol, Dept Stat, Changzhou, Peoples R China
[2] Cent Univ Finance & Econ, Sch Stat & Math, Beijing, Peoples R China
关键词
Global sensitivity indices; Non-parametric model; A-optimality; Symmetrical design; MODELS;
D O I
10.1007/s00184-022-00872-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the early stage of exploring a complex system, a preliminary experiment is used to capture the key characteristics of the model. Symmetrical global sensitivity analysis (SGSA) is one such experiment that explores the symmetrical structure of model by decomposing the model into independent symmetric functions. However, the existing experimental plans for SGSA rely on deterministic computational models that produce unique values of outputs when executed for specific values of inputs. In this paper, the problem of designing experiments for non-parametric SGSA is considered. Here the phrase "non-parametric" refers to model outputs containing random errors. The main result in the paper shows that a symmetrical design with certain constraints achieves A-optimum for the estimation of each output element function, and guarantees the superiority of the SGSA result. The statistical properties of non-parametric SGSA based on the optimal designs are further discussed, showing that the non-influential sensitivity indices can be estimated with low bias and volatility. Two explicit structures of the optimal designs are obtained. The optimality of the derived design is validated by simulation in the end.
引用
收藏
页码:219 / 237
页数:19
相关论文
共 50 条
  • [1] A-optimal designs for non-parametric symmetrical global sensitivity analysis
    Xueping Chen
    Yujie Gai
    Xiaodi Wang
    [J]. Metrika, 2023, 86 : 219 - 237
  • [2] A screening approach for non-parametric global sensitivity analysis
    Wang, Xiaodi
    Yang, Ming
    Zhang, Yingshan
    Kiang, Melody
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (04) : 656 - 675
  • [3] Discrete non-parametric kernel estimation for global sensitivity analysis
    Kiesse, Tristan Senga
    Ventura, Anne
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2016, 146 : 47 - 54
  • [4] A multivariate non-parametric kernel estimator for global sensitivity analysis
    Djerroud, Lamia
    Kiesse, Tristan Senga
    Adjabi, Smail
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1606 - 1622
  • [5] Non-parametric methods for global sensitivity analysis of model output with dependent inputs
    Mara, Thierry A.
    Tarantola, Stefano
    Annoni, Paola
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 72 : 173 - 183
  • [6] Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis
    Liu, Di
    Mishra, Ashok K.
    Ray, Deepak K.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 748
  • [7] Non-parametric estimation of conditional moments for sensitivity analysis
    Ratto, M.
    Pagano, A.
    Young, P. C.
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2009, 94 (02) : 237 - 243
  • [8] Sensitivity analysis of non-parametric tests for censored data
    Robin, S
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (08) : 1693 - 1715
  • [9] A note on ROC analysis and non-parametric estimate of sensitivity
    Jun Zhang
    Shane T. Mueller
    [J]. Psychometrika, 2005, 70 : 203 - 212
  • [10] A note on ROC analysis and non-parametric estimate of sensitivity
    Zhang, J
    Mueller, ST
    [J]. PSYCHOMETRIKA, 2005, 70 (01) : 203 - 212