Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization

被引:5
|
作者
Ghaffari-Hadigheh, Alireza [1 ]
Ghaffari-Hadigheh, Habib [2 ]
Terlaky, Tamas [3 ]
机构
[1] Azarbaijan Univ Tarbiat Moallem, Dept Math, Tabriz, Iran
[2] Payame Noor Univ, Dept Math, Shabestar, Iran
[3] McMaster Univ, Dept Comp & Software, Sch Computat Engn & Sci, Hamilton, ON, Canada
关键词
linear optimization; bi-parametric sensitivity analysis; optimal partition; invariancy region; optimal value function;
D O I
10.1007/s10100-007-0054-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In bi-parametric linear optimization (LO), perturbation occurs in both the right-hand-side and the objective function data with different parameters. In this paper, the bi-parametric LO problem is considered and we are interested in identifying the regions where the optimal partitions are invariant. These regions are referred to as invariancy regions. It is proved that invariancy regions are separated by vertical and horizontal lines and generate a mesh-like area. It is proved that the boundaries of these regions can be identified in polynomial time. The behavior of the optimal value function on these regions is investigated too.
引用
下载
收藏
页码:215 / 238
页数:24
相关论文
共 50 条
  • [1] Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization
    Alireza Ghaffari-Hadigheh
    Habib Ghaffari-Hadigheh
    Tamás Terlaky
    Central European Journal of Operations Research, 2008, 16 : 215 - 238
  • [2] Bi-parametric support set sensitivity analysis for perturbed linear optimization
    Ardabili, J. Saffar
    Mirnia, K.
    PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (03): : 629 - 640
  • [3] Matrix Perturbation and Optimal Partition Invariancy in Linear Optimization
    Ghaffari-Hadigheh, Alireza
    Mehanfar, Nayyer
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (03)
  • [4] Basis Invariancy Sensitivity Analysis for Robust Linear Optimization
    Dai, Shihao
    Gao, Feng
    Cheng, Xingrui
    Yang, Lei
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2424 - 2429
  • [5] Bi-parametric convex quadratic optimization
    Ghaffari-Hadigheh, Alireza
    Romanko, Oleksandr
    Terlaky, Tamas
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (02): : 229 - 245
  • [6] Active constraint set invariancy sensitivity analysis in linear optimization
    Hadigheh, A. Ghaffari
    Mirnia, K.
    Terlaky, T.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2007, 133 (03) : 303 - 315
  • [7] Generalized support set invariancy sensitivity analysis in linear optimization
    Hadigheh, Alireza Ghaffari
    Terlaky, Tamas
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2006, 2 (01) : 1 - 18
  • [8] Active Constraint Set Invariancy Sensitivity Analysis in Linear Optimization
    A. Ghaffari Hadigheh
    K. Mirnia
    T. Terlaky
    Journal of Optimization Theory and Applications, 2007, 133 : 303 - 315
  • [9] Comments on "Generalized support set invariancy sensitivity analysis in linear optimization"
    Kheirfam, Behrouz
    Mirnia, Kamal
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (03) : 611 - 616
  • [10] Multiparametric linear programming: Support set and optimal partition invariancy
    Hladik, Milan
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 202 (01) : 25 - 31