Bi-parametric convex quadratic optimization

被引:10
|
作者
Ghaffari-Hadigheh, Alireza [2 ]
Romanko, Oleksandr [3 ]
Terlaky, Tamas [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
[2] Azerbaijan Univ Tarbiat Moallem, Dept Math, Tabriz, Iran
[3] McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada
来源
OPTIMIZATION METHODS & SOFTWARE | 2010年 / 25卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
bi-parametric optimization; convex quadratic optimization; interior-point methods; optimal partition; invariancy region;
D O I
10.1080/10556780903239568
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we consider the convex quadratic optimization problem with simultaneous perturbation in the right-hand side of the constraints and the linear term of the objective function with different parameters. The regions with invariant optimal partitions as well as the behaviour of the optimal value function on the regions are investigated. We show that identifying these regions can be done in polynomial time in the output size. An algorithm for identifying all invariancy regions is presented. Some implementation details as well as a numerical example are discussed.
引用
下载
收藏
页码:229 / 245
页数:17
相关论文
共 50 条
  • [1] Bi-parametric operator preconditioning
    Escapil-Inchauspe, Paul
    Jerez-Hanckes, Carlos
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 220 - 232
  • [2] Bi-parametric operator preconditioning
    Escapil-Inchauspé, Paul
    Jerez-Hanckes, Carlos
    Computers and Mathematics with Applications, 2021, 102 : 220 - 232
  • [3] Bi-parametric support set sensitivity analysis for perturbed linear optimization
    Ardabili, J. Saffar
    Mirnia, K.
    PACIFIC JOURNAL OF OPTIMIZATION, 2008, 4 (03): : 629 - 640
  • [4] Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization
    Ghaffari-Hadigheh, Alireza
    Ghaffari-Hadigheh, Habib
    Terlaky, Tamas
    CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2008, 16 (02) : 215 - 238
  • [5] Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization
    Alireza Ghaffari-Hadigheh
    Habib Ghaffari-Hadigheh
    Tamás Terlaky
    Central European Journal of Operations Research, 2008, 16 : 215 - 238
  • [6] Modified Bi-parametric Method for optimization of BWR fuel reload patterns
    Perusquia, Raul
    Montes-Tadeo, Jose-Luis
    Jose Ortiz-Servin, Juan
    Oliver G, Alicia
    Perry, Robert T.
    PROGRESS IN NUCLEAR ENERGY, 2014, 76 : 255 - 268
  • [7] Flattening developable bi-parametric surfaces
    Univ of Hong Kong, Hong Kong
    Comput Struct, 4 (703-708):
  • [8] Convex parametric piecewise quadratic optimization: Theory and algorithms
    Patrinos, Panagiotis
    Sarimveis, Haralambos
    AUTOMATICA, 2011, 47 (08) : 1770 - 1777
  • [9] Flattening developable bi-parametric surfaces
    Gan, MC
    Tan, ST
    Chan, KW
    COMPUTERS & STRUCTURES, 1996, 58 (04) : 703 - 708
  • [10] Bi-parametric magnetic resonance imaging applied to obstetrics
    Manganaro, Lucia
    Vinci, Valeria
    Giancotti, Antonella
    Gerli, Sandro
    Cozzi, Denis A.
    Pusiol, Teresa
    Scialpi, Michele
    Roncati, Luca
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2017, 37 (05) : 670 - 672