Bi-parametric convex quadratic optimization

被引:10
|
作者
Ghaffari-Hadigheh, Alireza [2 ]
Romanko, Oleksandr [3 ]
Terlaky, Tamas [1 ]
机构
[1] Lehigh Univ, Dept Ind & Syst Engn, Bethlehem, PA 18015 USA
[2] Azerbaijan Univ Tarbiat Moallem, Dept Math, Tabriz, Iran
[3] McMaster Univ, Dept Comp & Software, Hamilton, ON, Canada
来源
OPTIMIZATION METHODS & SOFTWARE | 2010年 / 25卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
bi-parametric optimization; convex quadratic optimization; interior-point methods; optimal partition; invariancy region;
D O I
10.1080/10556780903239568
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we consider the convex quadratic optimization problem with simultaneous perturbation in the right-hand side of the constraints and the linear term of the objective function with different parameters. The regions with invariant optimal partitions as well as the behaviour of the optimal value function on the regions are investigated. We show that identifying these regions can be done in polynomial time in the output size. An algorithm for identifying all invariancy regions is presented. Some implementation details as well as a numerical example are discussed.
引用
下载
收藏
页码:229 / 245
页数:17
相关论文
共 50 条
  • [21] Assessment of Prostatic Ductal Adenocarcinoma on Bi-Parametric Magnetic Resonance Imaging
    Russell, J.
    Withey, S.
    Harkin, T.
    Chandra, A.
    Verma, H.
    Dasgupta, P.
    Elhage, O.
    BRITISH JOURNAL OF SURGERY, 2020, 107 : 224 - 224
  • [22] An algorithm for global solution to bi-parametric linear complementarity constrained linear programs
    Yu-Ching Lee
    Jong-Shi Pang
    John E. Mitchell
    Journal of Global Optimization, 2015, 62 : 263 - 297
  • [23] On the approximation properties of bi-parametric potential-type integral operators
    Sekin, Cagla
    Guloglu, Mutlu
    Aliev, Ilham A.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (06): : 1681 - 1691
  • [24] BI-PARAMETRIC CRITERION APPLIED TO BRITTLE AND QUASI-BRITTLE FRACTURE
    ZHAO, YS
    ENGINEERING FRACTURE MECHANICS, 1994, 49 (01) : 133 - 141
  • [25] ON THE QUADRATIC FRACTIONAL OPTIMIZATION WITH A STRICTLY CONVEX QUADRATIC CONSTRAINT
    Salahi, Maziar
    Fallahi, Saeed
    KYBERNETIKA, 2015, 51 (02) : 293 - 308
  • [26] Approximating Global Quadratic Optimization with Convex Quadratic Constraints
    Yinyu Ye
    Journal of Global Optimization, 1999, 15 : 1 - 17
  • [27] Approximating global quadratic optimization with convex quadratic constraints
    Ye, YY
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (01) : 1 - 17
  • [28] On the convex hull of convex quadratic optimization problems with indicators
    Wei, Linchuan
    Atamturk, Alper
    Gomez, Andres
    Kucukyavuz, Simge
    MATHEMATICAL PROGRAMMING, 2024, 204 (1-2) : 703 - 737
  • [29] On the convex hull of convex quadratic optimization problems with indicators
    Linchuan Wei
    Alper Atamtürk
    Andrés Gómez
    Simge Küçükyavuz
    Mathematical Programming, 2024, 204 : 703 - 737
  • [30] Learning to segment prostate cancer by aggressiveness from scribbles in bi-parametric MRI
    Duran, Audrey
    Dussert, Gaspard
    Lartizien, Carole
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032