Approximating global quadratic optimization with convex quadratic constraints

被引:35
|
作者
Ye, YY [1 ]
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
quadratic programming; global optimizer; approximation algorithm;
D O I
10.1023/A:1008370723217
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the problem of approximating the global maximum of a quadratic program (QP) subject to convex non-homogeneous quadratic constraints. We prove an approximation quality bound that is related to a condition number of the convex feasible set; and it is the currently best for approximating certain problems, such as quadratic optimization over the assignment polytope, according to the best of our knowledge.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条