Non-Abelian topological excitations in spinor condensates

被引:0
|
作者
Zhang, YB [1 ]
Mäkelä, H
Suominen, KA
机构
[1] Shanxi Univ, Dept Phys, Taiyuan 03006, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, Taiyuan 03006, Peoples R China
[3] Univ Turku, Dept Phys, FIN-20014 Turun, Finland
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the topological defects in atomic spin-1 and spin-2 Bose-Einstein condensates by applying the homotopy group theory. With this rigorous approach we clarify the previously controversial identification of symmetry groups and order parameter spaces for the spin-1 case, and show that the spin-2 case provides a rare example of a physical system with non-Abelian line defects, and the possibility to have winding numbers of 1/3 and its multiples.
引用
收藏
页码:536 / 538
页数:3
相关论文
共 50 条
  • [41] Topological Quantum Field Theory on non-Abelian gerbes
    Kalkkinen, Jussi
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 505 - 530
  • [42] Topological superfluids on a lattice with non-Abelian gauge fields
    Kubasiak, A.
    Massignan, P.
    Lewenstein, M.
    EPL, 2010, 92 (04)
  • [43] BRST QUANTIZATION OF NON-ABELIAN BF TOPOLOGICAL THEORIES
    CAICEDO, MI
    GIANVITTORIO, R
    RESTUCCIA, A
    STEPHANY, J
    PHYSICS LETTERS B, 1995, 354 (3-4) : 292 - 299
  • [44] Error Correction for Non-Abelian Topological Quantum Computation
    Wootton, James R.
    Burri, Jan
    Iblisdir, Sofyan
    Loss, Daniel
    PHYSICAL REVIEW X, 2014, 4 (01):
  • [45] Universal Quantum Computation with a Non-Abelian Topological Memory
    Wootton, James R.
    Lahtinen, Ville
    Pachos, Jiannis K.
    THEORY OF QUANTUM COMPUTATION, COMMUNICATION, AND CRYPTOGRAPHY, 2009, 5905 : 56 - 65
  • [46] Designer non-Abelian fractons from topological layers
    Williamson, Dominic J.
    Cheng, Meng
    PHYSICAL REVIEW B, 2023, 107 (03)
  • [47] Non-Abelian effects in dissipative photonic topological lattices
    Midya Parto
    Christian Leefmans
    James Williams
    Franco Nori
    Alireza Marandi
    Nature Communications, 14
  • [48] Topological phase transitions in the non-Abelian honeycomb lattice
    Bermudez, A.
    Goldman, N.
    Kubasiak, A.
    Lewenstein, M.
    Martin-Delgado, M. A.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [49] Simple models with non-Abelian moduli on topological defects
    Shifman, M.
    PHYSICAL REVIEW D, 2013, 87 (02):
  • [50] Topological Nematic States and Non-Abelian Lattice Dislocations
    Barkeshli, Maissam
    Qi, Xiao-Liang
    PHYSICAL REVIEW X, 2012, 2 (03):