Designer non-Abelian fractons from topological layers

被引:5
|
作者
Williamson, Dominic J. [1 ,2 ]
Cheng, Meng [1 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[2] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA
关键词
All Open Access; Green;
D O I
10.1103/PhysRevB.107.035103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We formulate a construction of type-I fracton models based on gauging planar subsystem symmetries of topologically ordered two-dimensional layers that have been stacked in three ambient spatial dimensions. Via our construction, any defect of an Abelian symmetry group in a two-dimensional symmetry-enriched topological order can be promoted to a fracton. This allows us to construct fracton models supporting chiral boundaries and fractons of noninteger quantum dimension. We also find a lineon model supporting non-Abelian surface fractons on its boundary.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Gauging permutation symmetries as a route to non-Abelian fractons
    Prem, Abhinav
    Williamson, Dominic J.
    SCIPOST PHYSICS, 2019, 7 (05):
  • [2] Designer non-Abelian anyon platforms: from Majorana to Fibonacci
    Alicea, Jason
    Stern, Ady
    PHYSICA SCRIPTA, 2015, T164
  • [3] Topological Entanglement in Abelian and Non-Abelian Excitation Eigenstates
    Papic, Z.
    Bernevig, B. A.
    Regnault, N.
    PHYSICAL REVIEW LETTERS, 2011, 106 (05)
  • [4] THE TOPOLOGICAL MEANING OF NON-ABELIAN ANOMALIES
    ALVAREZGAUME, L
    GINSPARG, P
    NUCLEAR PHYSICS B, 1984, 243 (03) : 449 - 474
  • [5] Non-Abelian Fractionalization in Topological Minibands
    Reddy, Aidan P.
    Paul, Nisarga
    Abouelkomsan, Ahmed
    Fu, Liang
    Physical Review Letters, 2024, 133 (16)
  • [6] Non-Abelian topological insulators from an array of quantum wires
    Sagi, Eran
    Oreg, Yuval
    PHYSICAL REVIEW B, 2014, 90 (20)
  • [7] Non-Abelian topological excitations in spinor condensates
    Zhang, YB
    Mäkelä, H
    Suominen, KA
    CHINESE PHYSICS LETTERS, 2005, 22 (03) : 536 - 538
  • [8] Non-Abelian Topological Bound States in the Continuum
    Qian, Long
    Zhang, Weixuan
    Sun, Houjuan
    Zhang, Xiangdong
    PHYSICAL REVIEW LETTERS, 2024, 132 (04)
  • [9] Splitting the Topological Degeneracy of Non-Abelian Anyons
    Bonderson, Parsa
    PHYSICAL REVIEW LETTERS, 2009, 103 (11)
  • [10] Non-Abelian extensions of topological lie algebras
    Neeb, KH
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 991 - 1041