Non-Abelian topological excitations in spinor condensates

被引:0
|
作者
Zhang, YB [1 ]
Mäkelä, H
Suominen, KA
机构
[1] Shanxi Univ, Dept Phys, Taiyuan 03006, Peoples R China
[2] Shanxi Univ, Inst Theoret Phys, Taiyuan 03006, Peoples R China
[3] Univ Turku, Dept Phys, FIN-20014 Turun, Finland
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the topological defects in atomic spin-1 and spin-2 Bose-Einstein condensates by applying the homotopy group theory. With this rigorous approach we clarify the previously controversial identification of symmetry groups and order parameter spaces for the spin-1 case, and show that the spin-2 case provides a rare example of a physical system with non-Abelian line defects, and the possibility to have winding numbers of 1/3 and its multiples.
引用
收藏
页码:536 / 538
页数:3
相关论文
共 50 条
  • [31] Physics of non-Abelian vortices in Bose-Einstein condensates
    Kobayashi, Michikazu
    STATPHYS-KOLKATA VII, 2011, 297
  • [32] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    PHYSICAL REVIEW B, 2017, 96 (22)
  • [33] THE NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    周光召
    朱重远
    戴元本
    吴詠时
    Science China Mathematics, 1980, (01) : 40 - 60
  • [34] NON-TOPOLOGICAL SOLITON WITH A NON-ABELIAN INTERNAL SYMMETRY
    ZHOU, GH
    CHOU, KC
    ZHU, ZU
    CHU, CY
    DAI, YB
    WU, YS
    SCIENTIA SINICA, 1980, 23 (01): : 40 - 60
  • [35] Non-Abelian Josephson Effect between Two F=2 Spinor Bose-Einstein Condensates in Double Optical Traps
    Qi, Ran
    Yu, Xiao-Lu
    Li, Z. B.
    Liu, W. M.
    PHYSICAL REVIEW LETTERS, 2009, 102 (18)
  • [36] Symmetry enforced non-Abelian topological order at the surface of a topological insulator
    Chen, Xie
    Fidkowski, Lukasz
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2014, 89 (16)
  • [37] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [38] SPINOR FIELDS IN THE NONSYMMETRIC, NON-ABELIAN KALUZA-KLEIN THEORY
    KALINOWSKI, MW
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1987, 26 (06) : 559 - 573
  • [39] Topological insulating phases of non-Abelian anyonic chains
    DeGottardi, Wade
    PHYSICAL REVIEW B, 2014, 90 (07):
  • [40] Non-Abelian effects in dissipative photonic topological lattices
    Parto, Midya
    Leefmans, Christian
    Williams, James
    Nori, Franco
    Marandi, Alireza
    NATURE COMMUNICATIONS, 2023, 14 (01)