A Non-Parametric Algorithm for Discovering Triggering Patterns of Spatio-Temporal Event Types

被引:1
|
作者
Batu, Berna Bakir [1 ]
Temizel, Tugba Taskaya [2 ]
Duzgun, H. Sebnem [3 ]
机构
[1] Univ Paris SudGif Sur, Lab Rech Informat, F-91190 Paris, France
[2] Middle East Tech Univ, Dept Informat Syst, Informat Inst, TR-06530 Ankara, Turkey
[3] Colorado Sch Mines, Dept Min Engn, Golden, CO 80401 USA
关键词
Diggle D; Hawkes self-exciting process; multivariate Hawkes model; space-time clustering; spatio-temporal sequences; stochastic declustering; POINT-PROCESS MODELS;
D O I
10.1109/TKDE.2017.2754252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal or spatio-temporal sequential pattern discovery is a well-recognized important problem in many domains like seismology, criminology, and finance. The majority of the current approaches are based on candidate generation which necessitates parameter tuning, namely, definition of a neighborhood, an interest measure, and a threshold value to evaluate candidates. However, their performance is limited as the success of these methods relies heavily on parameter settings. In this paper, we propose an algorithm which uses a nonparametric stochastic de-clustering procedure and a multivariate Hawkes model to define triggering relations within and among the event types and employs the estimated model to extract significant triggering patterns of event types. We tested the proposed method with real and synthetic data sets exhibiting different characteristics. The method gives good results that are comparable with the methods based on candidate generation in the literature.
引用
收藏
页码:2629 / 2642
页数:14
相关论文
共 50 条
  • [41] Discovering Spatio-Temporal Rationales for Video Question Answering
    Li, Yicong
    Xiao, Junbin
    Feng, Chun
    Wang, Xiang
    Chua, Tat-Seng
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 13823 - 13832
  • [42] Discovering Spatio-temporal Relationships among IoT Services
    Huang, Bing
    Bouguettaya, Athman
    Neiat, Azadeh Ghari
    2018 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES (IEEE ICWS 2018), 2018, : 347 - 350
  • [43] Discovering correlated spatio-temporal changes in evolving graphs
    Jeffrey Chan
    James Bailey
    Christopher Leckie
    Knowledge and Information Systems, 2008, 16 : 53 - 96
  • [44] Discovering spatio-temporal relationships in the distribution of building fires
    Spatenkova, Olga
    Virrantaus, Kirsi
    FIRE SAFETY JOURNAL, 2013, 62 : 49 - 63
  • [45] A framework for mining sequential patterns from spatio-temporal event data sets
    Huang, Yan
    Zhang, Liqin
    Zhang, Pusheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (04) : 433 - 448
  • [46] An Efficient Probabilistic Algorithm to Detect Periodic Patterns in Spatio-Temporal Datasets
    Gutierrez-Soto, Claudio
    Galdames, Patricio
    Palomino, Marco A.
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (06)
  • [47] A new and efficient algorithm to look for periodic patterns on spatio-temporal databases
    Gutierrez-Soto, Claudio
    Gutierrez-Bunster, Tatiana
    Fuentes, Guillermo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4563 - 4572
  • [48] Spatio-temporal rainfall trend assessment over a semi-arid region of Karnataka state, using non-parametric techniques
    Harishnaika N
    S A Ahmed
    Sanjay Kumar
    Arpitha M
    Arabian Journal of Geosciences, 2022, 15 (16)
  • [49] Spatio-temporal dynamics in parametric sound generation
    Perez-Arjona, Isabel
    Sanchez-Morcillo, Victor J.
    Espinosa, Victor
    NONLINEAR ACOUSTICS FUNDAMENTALS AND APPLICATIONS, 2008, 1022 : 155 - 158
  • [50] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475