A Non-Parametric Algorithm for Discovering Triggering Patterns of Spatio-Temporal Event Types

被引:1
|
作者
Batu, Berna Bakir [1 ]
Temizel, Tugba Taskaya [2 ]
Duzgun, H. Sebnem [3 ]
机构
[1] Univ Paris SudGif Sur, Lab Rech Informat, F-91190 Paris, France
[2] Middle East Tech Univ, Dept Informat Syst, Informat Inst, TR-06530 Ankara, Turkey
[3] Colorado Sch Mines, Dept Min Engn, Golden, CO 80401 USA
关键词
Diggle D; Hawkes self-exciting process; multivariate Hawkes model; space-time clustering; spatio-temporal sequences; stochastic declustering; POINT-PROCESS MODELS;
D O I
10.1109/TKDE.2017.2754252
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal or spatio-temporal sequential pattern discovery is a well-recognized important problem in many domains like seismology, criminology, and finance. The majority of the current approaches are based on candidate generation which necessitates parameter tuning, namely, definition of a neighborhood, an interest measure, and a threshold value to evaluate candidates. However, their performance is limited as the success of these methods relies heavily on parameter settings. In this paper, we propose an algorithm which uses a nonparametric stochastic de-clustering procedure and a multivariate Hawkes model to define triggering relations within and among the event types and employs the estimated model to extract significant triggering patterns of event types. We tested the proposed method with real and synthetic data sets exhibiting different characteristics. The method gives good results that are comparable with the methods based on candidate generation in the literature.
引用
收藏
页码:2629 / 2642
页数:14
相关论文
共 50 条
  • [31] Discovery of crime event sequences with constricted spatio-temporal sequential patterns
    Piotr S. Maciąg
    Robert Bembenik
    Artur Dubrawski
    Journal of Big Data, 10
  • [32] Intelligence and spatio-temporal patterns of event-related cortical desynchronization
    Neubauer, AC
    Freudenthaler, HH
    Pfurtscheller, G
    JOURNAL OF PSYCHOPHYSIOLOGY, 1997, 11 (04) : 375 - 375
  • [33] Discovery of closed spatio-temporal sequential patterns from event data
    Maciag, Piotr S.
    Kryszkiewicz, Marzena
    Bembenik, Robert
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 707 - 716
  • [34] Spatio-temporal Event Modeling and Ranking
    Li, Xuefei
    Cai, Hongyun
    Huang, Zi
    Yang, Yang
    Zhou, Xiaofang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2013, PT II, 2013, 8181 : 361 - 374
  • [35] Spatio-temporal analysis of trends and variability in precipitation across Morocco: Comparative analysis of recent and old non-parametric methods
    Bouizrou, Ismail
    Aqnouy, Mourad
    Bouadila, Abdelmounim
    JOURNAL OF AFRICAN EARTH SCIENCES, 2022, 196
  • [36] A Non Parametric Approach to the Outlier Detection in Spatio-Temporal Data Analysis
    Albanese, Alessia
    Petrosino, Alfredo
    INFORMATION TECHNOLOGY AND INNOVATION TRENDS IN ORGANIZATIONS, 2011, : 101 - 108
  • [37] Discovering Spatio-Temporal Co-Occurrence Patterns of Crimes with Uncertain Occurrence Time
    Chen, Yuanfang
    Cai, Jiannan
    Deng, Min
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (08)
  • [38] Discovering correlated spatio-temporal changes in evolving graphs
    Chan, Jeffrey
    Bailey, James
    Leckie, Christopher
    KNOWLEDGE AND INFORMATION SYSTEMS, 2008, 16 (01) : 53 - 96
  • [39] DISCOVERING AND LINKING SPATIO-TEMPORAL BIG LINKED DATA
    Zinke, Christian
    Ngomo, Axel-Cyrille Ngonga
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 411 - 414
  • [40] Spatio-temporal investigations on the triggering of pellet induced ELMs
    Kocsis, G.
    Kalvin, S.
    Lang, P. T.
    Maraschek, M.
    Neuhauser, J.
    Schneider, W.
    Szepesi, T.
    NUCLEAR FUSION, 2007, 47 (09) : 1166 - 1175