Error in an approximate wave function and an error minimization scheme

被引:2
|
作者
Mukhopadhyay, S [1 ]
Bhattacharyya, K [1 ]
机构
[1] Univ Burdwan, Dept Chem, Burdwan 713104, W Bengal, India
关键词
variational principle; bound states; Siegert states;
D O I
10.1002/qua.10708
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An estimate of error in an approximate wave function for a stationary state is put forward that does not require any information about the exact state. The measure is sensitive and direct. Parameters embedded in a trial wave function can be varied to minimize this error as well, leading to a variational principle. Such a scheme works nicely for bound states and the more so for Siegert states, for which the standard energy minimization principle does not apply. Pilot calculations on the anharmonic oscillator system and the radial Stark effect in the hydrogen atom reveal the worth of the endeavor. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:492 / 500
页数:9
相关论文
共 50 条
  • [41] A NOVEL-APPROACH TO ERROR FUNCTION MINIMIZATION FOR FEEDFORWARD NEURAL NETWORKS
    SINKUS, R
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1995, 361 (1-2): : 290 - 296
  • [42] An error function minimization approach for the inverse problem of adaptive mirrors tuning
    Vannoni, Maurizio
    Yang, Fan
    Siewert, Frank
    Sinn, Harald
    ADAPTIVE X-RAY OPTICS III, 2014, 9208
  • [43] APPROXIMATE TREATMENT OF EXPERIMENTAL ERROR
    GOOD, RH
    AMERICAN JOURNAL OF PHYSICS, 1976, 44 (10) : 1011 - 1012
  • [44] ENERGY AND ERROR FUNCTION MINIMIZATION FOR COMPUTATION OF OPTIMAL SHAPE-PARAMETERS
    GOPALSAMY, S
    REDDY, TS
    COMPUTERS & GRAPHICS, 1993, 17 (04) : 403 - 405
  • [45] ENERGY ERROR-ESTIMATES FOR A LINEAR SCHEME TO APPROXIMATE NONLINEAR PARABOLIC PROBLEMS
    MAGENES, E
    NOCHETTO, RH
    VERDI, C
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1987, 21 (04): : 655 - 678
  • [46] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12
  • [47] Approximate Quantum Error Correction
    Schumacher, Benjamin
    Westmoreland, Michael D.
    QUANTUM INFORMATION PROCESSING, 2002, 1 (1-2) : 5 - 12
  • [48] Approximate Adder with Reduced Error
    Balasubramanian, P.
    Maskell, D. L.
    Prasad, K.
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2019), 2019, : 293 - 296
  • [49] An Approximate Calculation for Error Spectrum
    Peng, Weishi
    Fang, Yangwang
    Chen, Shaohua
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 278 - 281
  • [50] Error Correction for Approximate Computing
    Zhang, Hang
    Abdi, Afshin
    Fekri, Faramarz
    Esmaeilzadeh, Hadi
    2016 54TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2016, : 948 - 953