Error in an approximate wave function and an error minimization scheme

被引:2
|
作者
Mukhopadhyay, S [1 ]
Bhattacharyya, K [1 ]
机构
[1] Univ Burdwan, Dept Chem, Burdwan 713104, W Bengal, India
关键词
variational principle; bound states; Siegert states;
D O I
10.1002/qua.10708
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An estimate of error in an approximate wave function for a stationary state is put forward that does not require any information about the exact state. The measure is sensitive and direct. Parameters embedded in a trial wave function can be varied to minimize this error as well, leading to a variational principle. Such a scheme works nicely for bound states and the more so for Siegert states, for which the standard energy minimization principle does not apply. Pilot calculations on the anharmonic oscillator system and the radial Stark effect in the hydrogen atom reveal the worth of the endeavor. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:492 / 500
页数:9
相关论文
共 50 条
  • [21] High-Precision Bootstrapping for Approximate Homomorphic Encryption by Error Variance Minimization
    Lee, Yongwoo
    Lee, Joon-Woo
    Kim, Young-Sik
    Kim, Yongjune
    No, Jong-Seon
    Kang, HyungChul
    ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 551 - 580
  • [22] A posteriori element residual error estimations for the cell functional minimization scheme
    Yin, Li
    Gao, Zhiming
    Cao, Yanzhao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (06) : 2123 - 2141
  • [23] The error in solving a wave equation based on a scheme with weights
    Sukhinov A.I.
    Chistyakov A.E.
    Mathematical Models and Computer Simulations, 2017, 9 (6) : 649 - 656
  • [24] Novel approach to error function minimization for feedforward neural networks
    Sinkus, R.
    Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1995, 361 (1-2):
  • [25] On Using Approximate Computing to Build an Error Detection Scheme for Arithmetic Circuits
    Deveautour, B.
    Virazel, A.
    Girard, P.
    Gherman, V.
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2020, 36 (01): : 33 - 46
  • [26] On Using Approximate Computing to Build an Error Detection Scheme for Arithmetic Circuits
    B. Deveautour
    A. Virazel
    P. Girard
    V. Gherman
    Journal of Electronic Testing, 2020, 36 : 33 - 46
  • [27] LOWER BOUNDS OF ERROR FOR A TRIAL WAVE FUNCTION
    BONELLI, P
    MAJORINO, GF
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1968, 45 (06): : 550 - &
  • [28] Accelerating error-tolerant applications with approximate function reuse
    Brandalero, Marcelo
    da Silveira, Leonardo Almeida
    Souza, Jeckson Dellagostin
    Schneider Beck, Antonio Carlos
    SCIENCE OF COMPUTER PROGRAMMING, 2018, 165 : 54 - 67
  • [29] A new based error approach to approximate the inverse langevin function
    Alain Nkenfack Nguessong
    Tibi Beda
    François Peyraut
    Rheologica Acta, 2014, 53 : 585 - 591
  • [30] AN IMPROVED APPROXIMATE CLOSED-FORM SOLUTION TO THE ERROR FUNCTION
    BUSEN, KM
    AMERICAN JOURNAL OF PHYSICS, 1981, 49 (09) : 886 - 887