Spatio-temporal oscillation for a singular predator-prey model

被引:3
|
作者
Guo, Jong-Shenq [1 ]
Shimojo, Masahiko [2 ]
机构
[1] Tamkang Univ, Dept Math, 151 Yingzhuan Rd, New Taipei 25137, Taiwan
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
关键词
Singular predator-prey model; Darboux integrable; Center; Spatial-temporal oscillation; BEHAVIOR; SYSTEM;
D O I
10.1016/j.jmaa.2017.10.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an initial boundary value problem for a reaction diffusion system arising in the study of a singular predator prey system. Under an assumption on the growth rates, we first prove that the unique co-existence state is a center for the kinetic system. Then we prove that solutions of the diffusion system with equal diffusivity become spatially homogeneous and are subject to the kinetic part asymptotically. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Spatio-temporal dynamics of a reaction-diffusion system for a predator–prey model with hyperbolic mortality
    Tonghua Zhang
    Yepeng Xing
    Hong Zang
    Maoan Han
    Nonlinear Dynamics, 2014, 78 : 265 - 277
  • [32] Effect of kernels on spatio-temporal patterns of a non-local prey-predator model
    Pal, Swadesh
    Ghorai, S.
    Banerjee, Malay
    MATHEMATICAL BIOSCIENCES, 2019, 310 : 96 - 107
  • [33] A predator-prey model with infected prey
    Hethcote, HW
    Wang, WD
    Han, LT
    Zhien, M
    THEORETICAL POPULATION BIOLOGY, 2004, 66 (03) : 259 - 268
  • [34] A predator-prey model with diseases in both prey and predator
    Gao, Xubin
    Pan, Qiuhui
    He, Mingfeng
    Kang, Yibin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (23) : 5898 - 5906
  • [35] A predator-prey model with disease in the prey
    Chattopadhyay, J
    Arino, O
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (06) : 747 - 766
  • [36] A predator-prey model with disease in prey
    Rahman, Md. Sabiar
    Chakravarty, Santabrata
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2013, 18 (02): : 191 - 209
  • [37] Singular perturbation analysis of a model for a predator-prey system invaded by a parasite
    Lenbury, Y
    BIOSYSTEMS, 1996, 39 (03) : 251 - 262
  • [38] Spatio-temporal patterns and global bifurcation of a nonlinear cross-diffusion predator-prey model with prey-taxis and double Beddington-DeAngelis functional responses
    Luo, Demou
    Wang, Qiru
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 79
  • [39] A general predator-prey model
    Krabs, W
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2003, 9 (04) : 387 - 401
  • [40] DYNAMICS OF A PREDATOR-PREY MODEL
    Volokitin, E. P.
    Treskov, S. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 87 - 99