Spatio-temporal oscillation for a singular predator-prey model

被引:3
|
作者
Guo, Jong-Shenq [1 ]
Shimojo, Masahiko [2 ]
机构
[1] Tamkang Univ, Dept Math, 151 Yingzhuan Rd, New Taipei 25137, Taiwan
[2] Okayama Univ Sci, Dept Appl Math, Okayama 7000005, Japan
关键词
Singular predator-prey model; Darboux integrable; Center; Spatial-temporal oscillation; BEHAVIOR; SYSTEM;
D O I
10.1016/j.jmaa.2017.10.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an initial boundary value problem for a reaction diffusion system arising in the study of a singular predator prey system. Under an assumption on the growth rates, we first prove that the unique co-existence state is a center for the kinetic system. Then we prove that solutions of the diffusion system with equal diffusivity become spatially homogeneous and are subject to the kinetic part asymptotically. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] Dynamics of a predator-prey model
    Sáez, ES
    González-Olivares, E
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1867 - 1878
  • [42] On the entropy of the predator-prey model
    Balestrino, A.
    Cavallo, A.
    De Maria, G.
    2014 8TH ANNUAL IEEE SYSTEMS CONFERENCE (SYSCON), 2014, : 357 - 363
  • [43] The simplest predator-prey model
    Kallay, Michael
    Cohen, Yosef
    ECOLOGICAL MODELLING, 2008, 218 (3-4) : 398 - 399
  • [44] MODEL OF PREDATOR-PREY RELATIONSHIP
    GILPIN, ME
    THEORETICAL POPULATION BIOLOGY, 1974, 5 (03) : 333 - 344
  • [45] ON MAYS PREDATOR-PREY MODEL
    KAPUR, JN
    KAPUR, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1981, 12 (11): : 1299 - 1311
  • [46] Predator-prey fuzzy model
    Peixoto, Magda da Silva
    de Barros, Laecio Carvalho
    Bassanezi, Rodney Carlos
    ECOLOGICAL MODELLING, 2008, 214 (01) : 39 - 44
  • [47] Impulsive predator-prey model
    Charif, Fayssal
    Helal, Mohamed
    Lakmeche, Abdelkader
    WORKSHOP ON MATHEMATICS FOR LIFE SCIENCES (WMLS 2014), 2015, 4
  • [48] Indirect taxis drives spatio-temporal patterns in an extended Schoener's intraguild predator–prey model
    Mishra, Purnedu
    Wrzosek, Dariusz
    Applied Mathematics Letters, 2022, 125
  • [49] A predator-prey model with genetic differentiation both in the predator and prey
    Wang, Lisha
    Zhao, Jiandong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (03) : 2616 - 2635
  • [50] On a nonautonomous predator-prey model with prey dispersal
    Chen, Fengde
    Huang, Aimei
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 809 - 822