DYNAMICS OF A PREDATOR-PREY MODEL

被引:0
|
作者
Volokitin, E. P. [1 ]
Treskov, S. A. [1 ]
机构
[1] Russian Acad Sci, Sobolev Inst Math, Siberian Branch, Acad Koptyug Pr 4, Novosibirsk 630090, Russia
关键词
bifurcation diagram; predator-prey model;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a global bifurcation diagram of the plane differential system (x) over dot = x(1 - x) - xy/(a + x(2)), (y) over dot = y(delta - beta y/x), x(t)>0, y(t)>0, a>0, delta>0, beta>0, which describes the predator-prey interaction.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [1] Dynamics of a predator-prey model
    Sáez, ES
    González-Olivares, E
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 59 (05) : 1867 - 1878
  • [2] Dynamics of a predator-prey model with disease in the predator
    Pal, Pallav Jyoti
    Haque, Mainul
    Mandal, Prashanta Kumar
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (16) : 2429 - 2450
  • [3] Spatiotemporal dynamics of a predator-prey model
    Liu, Pan-Ping
    Xue, Yong
    [J]. NONLINEAR DYNAMICS, 2012, 69 (1-2) : 71 - 77
  • [4] Global Dynamics of a Predator-prey Model
    Huang Rui
    Pan Qiang-you
    Bao Lian-zhang
    Wang Chun-peng
    [J]. Communications in Mathematical Research, 2015, 31 (03) : 274 - 280
  • [5] Global dynamics of a predator-prey model
    Liu, Xiuxiang
    Lou, Yijun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 323 - 340
  • [6] On the dynamics of an intraguild predator-prey model
    Capone, F.
    Carfora, M. F.
    De Luca, R.
    Torcicollo, I.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 149 : 17 - 31
  • [7] Dynamics of a delayed predator-prey model with predator migration
    Chen, Yuming
    Zhang, Fengqin
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (03) : 1400 - 1412
  • [8] Dynamics of a Predator-Prey Model with the Additive Predation in Prey
    Bai, Dingyong
    Zhang, Xiaoxuan
    [J]. MATHEMATICS, 2022, 10 (04)
  • [9] Dynamics of a predator-prey model in a habitat with cover
    Trojan, K
    Pekalski, A
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 330 (1-2) : 130 - 138
  • [10] Dynamics of a ricker type predator-prey model
    Hamada, M. Y.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024,