Whirling hexagons and defect chaos in hexagonal non-Boussinesq convection

被引:10
|
作者
Young, YN [1 ]
Riecke, H
Pesch, W
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
[2] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[3] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
来源
NEW JOURNAL OF PHYSICS | 2003年 / 5卷
关键词
D O I
10.1088/1367-2630/5/1/135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating ( whirling) hexagons. Using triangulation we obtain the distribution functions for the number of pentagonal and heptagonal convection cells. In contrast to the results found for defect chaos in the complex Ginzburg-Landau equation, in inclined-layer convection, and in spiral-defect chaos, the distribution functions can show deviations from a squared Poisson distribution that suggest non-trivial correlations between the defects.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Modeling of natural convection with Smoothed Particle Hydrodynamics: Non-Boussinesq formulation
    Szewc, K.
    Pozorski, J.
    Taniere, A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (23-24) : 4807 - 4816
  • [42] Non-Boussinesq simulations of Rayleigh-Benard convection in a perfect gas
    Robinson, F
    Chan, K
    PHYSICS OF FLUIDS, 2004, 16 (05) : 1321 - 1333
  • [43] Influence of non-Boussinesq effects on patterns in salt-finger convection
    Renardy, YY
    Renardy, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02): : 224 - 250
  • [44] Universal solutions for Boussinesq and non-Boussinesq plumes
    van den Bremer, T. S.
    Hunt, G. R.
    JOURNAL OF FLUID MECHANICS, 2010, 644 : 165 - 192
  • [45] On Boussinesq and non-Boussinesq starting forced plumes
    Ai, Jiaojian
    Law, Adrian Wing-Keung
    Yu, S. C. M.
    JOURNAL OF FLUID MECHANICS, 2006, 558 : 357 - 386
  • [46] Experimental non-Boussinesq fountains
    Mehaddi, Rabah
    Vauquelin, Olivier
    Candelier, Fabien
    JOURNAL OF FLUID MECHANICS, 2015, 784
  • [47] Non-Boussinesq effects on natural convection airflows simulated in a tall rectangular cavity
    Sondur, Sneha
    Mescher, Ann M.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023, 84 (04) : 297 - 314
  • [48] NUMERICAL STUDY OF NATURAL CONVECTION IN A SQUARE CAVITY UNDER NON-BOUSSINESQ CONDITIONS
    Hamimid, Saber
    Guellal, Messaoud
    Bouafia, Madiha
    THERMAL SCIENCE, 2016, 20 (05): : 1509 - 1517
  • [49] Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection
    Suslov, Sergey A.
    PHYSICAL REVIEW E, 2010, 81 (02):
  • [50] Non-Boussinesq convection at moderate Rayleigh numbers in low temperature gaseous helium
    Sameen, A.
    Verzicco, R.
    Sreenivasan, K. R.
    PHYSICA SCRIPTA, 2008, T132