Whirling hexagons and defect chaos in hexagonal non-Boussinesq convection

被引:10
|
作者
Young, YN [1 ]
Riecke, H
Pesch, W
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
[2] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[3] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
来源
NEW JOURNAL OF PHYSICS | 2003年 / 5卷
关键词
D O I
10.1088/1367-2630/5/1/135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating ( whirling) hexagons. Using triangulation we obtain the distribution functions for the number of pentagonal and heptagonal convection cells. In contrast to the results found for defect chaos in the complex Ginzburg-Landau equation, in inclined-layer convection, and in spiral-defect chaos, the distribution functions can show deviations from a squared Poisson distribution that suggest non-trivial correlations between the defects.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Non-Boussinesq rolls in 2d thermal convection
    Málaga, C.
    Mandujano, F.
    Peralta-Fabi, R.
    Arzate, C.
    European Journal of Mechanics, B/Fluids, 2015, 49 (PA) : 65 - 70
  • [32] STRONG RESONANCE IN 2-DIMENSIONAL NON-BOUSSINESQ CONVECTION
    MANOGG, G
    METZENER, P
    PHYSICS OF FLUIDS, 1994, 6 (09) : 2944 - 2955
  • [33] Non-Boussinesq laminar mixed convection in a non-isothermal fin array
    Das, Biplab
    Giri, Asis
    APPLIED THERMAL ENGINEERING, 2014, 63 (01) : 447 - 458
  • [34] A numerical study on the non-Boussinesq effect in the natural convection in horizontal annulus
    Zhang, Yu
    Cao, Yuhui
    PHYSICS OF FLUIDS, 2018, 30 (04)
  • [35] Pressure effects on natural convection for non-Boussinesq fluid in a rectangular enclosure
    Hung, KS
    Cheng, CH
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2002, 41 (05) : 515 - 528
  • [36] A CHEBYSHEV COLLOCATION ALGORITHM FOR 2D NON-BOUSSINESQ CONVECTION
    LEQUERE, P
    MASSON, R
    PERROT, P
    JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (02) : 320 - 335
  • [37] Experimental velocity study of non-Boussinesq Rayleigh-Benard convection
    Valori, Valentina
    Elsinga, Gerrit
    Rohde, Martin
    Tummers, Mark
    Westerweel, Jerry
    van der Hagen, Tim
    PHYSICAL REVIEW E, 2017, 95 (05) : 053113
  • [38] Influence of non-Boussinesq effects on patterns in salt-finger convection
    Y. Y. Renardy
    M. Renardy
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 1998, 49 : 224 - 250
  • [39] Natural convection in a closed cavity under stochastic non-Boussinesq conditions
    Le Maître, O
    Reagan, MT
    Debusschere, B
    Najm, HN
    Ghanem, RG
    Knio, OM
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02): : 375 - 394
  • [40] Analysis of coupling between hydrodynamic and thermal instabilities in non-Boussinesq convection
    Suslov, Sergey A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1435 - E1443