Whirling hexagons and defect chaos in hexagonal non-Boussinesq convection

被引:10
|
作者
Young, YN [1 ]
Riecke, H
Pesch, W
机构
[1] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA
[2] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
[3] Univ Bayreuth, Inst Phys, D-95440 Bayreuth, Germany
来源
NEW JOURNAL OF PHYSICS | 2003年 / 5卷
关键词
D O I
10.1088/1367-2630/5/1/135
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study hexagon patterns in non-Boussinesq convection of a thin rotating layer of water. For realistic parameters and boundary conditions we identify various linear instabilities of the pattern. We focus on the dynamics arising from an oscillatory side-band instability that leads to a spatially disordered chaotic state characterized by oscillating ( whirling) hexagons. Using triangulation we obtain the distribution functions for the number of pentagonal and heptagonal convection cells. In contrast to the results found for defect chaos in the complex Ginzburg-Landau equation, in inclined-layer convection, and in spiral-defect chaos, the distribution functions can show deviations from a squared Poisson distribution that suggest non-trivial correlations between the defects.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Convective and absolute instabilities in non-Boussinesq mixed convection
    Suslov, Sergey A.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2007, 21 (04) : 271 - 290
  • [22] Hexagonal pattern instabilities in rotating Rayleigh-Benard convection of a non-Boussinesq fluid: Experimental results
    Guarino, A
    Vidal, V
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [23] Natural convection of Boussinesq and non-Boussinesq airflows simulated in a tall annular cavity
    Sondur, Sneha R.
    Mescher, Ann M.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023, 84 (03) : 269 - 295
  • [24] Non-Boussinesq rolls in 2d thermal convection
    Malaga, C.
    Mandujano, F.
    Peralta-Fabi, R.
    Arzate, C.
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2015, 49 : 65 - 70
  • [25] Non-Boussinesq convection at low Prandtl numbers relevant to the Sun
    Pandey, Ambrish
    Schumacher, Joerg
    Sreenivasan, Katepalli R.
    PHYSICAL REVIEW FLUIDS, 2021, 6 (10)
  • [26] Non-Boussinesq rolls in 2d thermal convection
    Málaga, C.
    Mandujano, F.
    Peralta-Fabi, R.
    Arzate, C.
    European Journal of Mechanics, B/Fluids, 2015, 49 (PART A) : 65 - 70
  • [27] NON-BOUSSINESQ EFFECTS ON TRANSITIONS IN HELE-SHAW CONVECTION
    HWANG, SH
    CHANG, HC
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (06): : 924 - 937
  • [28] Non-Boussinesq convection in a square cavity with surface thermal radiation
    Bouafia, M.
    Hamimid, S.
    Guellal, M.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2015, 96 : 236 - 247
  • [29] Non-Boussinesq effect: Asymmetric velocity profiles in thermal convection
    Zhang, J
    Childress, S
    Libchaber, A
    PHYSICS OF FLUIDS, 1998, 10 (06) : 1534 - 1536