Characterization of interpolation between Grand, small or classical Lebesgue spaces

被引:31
|
作者
Fiorenza, Alberto [1 ,2 ]
Formica, Maria Rosaria [3 ]
Gogatishvili, Amiran [4 ]
Kopaliani, Tengiz [5 ]
Rakotoson, Jean Michel [6 ]
机构
[1] Univ Napoli Federico II, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
[2] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[3] Univ Napoli Parthenope, Via Gen Parisi 13, I-80132 Naples, Italy
[4] Czech Acad Sci Zitna, Inst Math, Prague 11567 1, Czech Republic
[5] Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, Univ St 2, GE-0143 Tbilisi, Georgia
[6] Univ Poitiers, Lab Math & Applicat, Ave Marie & Pierre Curie,Teleport 2,BP 30179, F-86692 Futuroscope, France
基金
美国国家科学基金会;
关键词
REAL INTERPOLATION; DUALITY;
D O I
10.1016/j.na.2017.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the interpolation spaces between Grand, small or classical Lebesgue are so called Lorentz-Zygmund spaces or more generally G Gamma-spaces. As a direct consequence of our results any Lorentz-Zygmund space L-a,L-r (Log L)(beta), is an interpolation space in the sense of Peetre between either two Grand Lebesgue spaces or between two small spaces provided that 1 < a < infinity, beta not equal 0. The method consists in computing the so called K-functional of the interpolation space and in identifying the associated norm. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 453
页数:32
相关论文
共 50 条
  • [21] Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications
    Fiorenza, A
    Rakotoson, JM
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) : 187 - 203
  • [22] Compactness, interpolation inequalities for small Lebesgue-Sobolev spaces and applications
    A. Fiorenza
    J. M. Rakotoson
    Calculus of Variations and Partial Differential Equations, 2006, 25 : 187 - 203
  • [23] Composition Operators in Grand Lebesgue Spaces
    A. Karapetyants
    M. Lanza de Cristoforis
    Analysis Mathematica, 2023, 49 : 151 - 166
  • [24] On the Duality of Grand Bochner–Lebesgue Spaces
    P. Jain
    M. Singh
    A. P. Singh
    V. D. Stepanov
    Mathematical Notes, 2020, 107 : 247 - 256
  • [25] THE FORGOTTEN PARAMETER IN GRAND LEBESGUE SPACES
    Capone, Claudia
    Fiorenza, Alberto
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2023, 177 (02) : 165 - 168
  • [26] Composition Operators in Grand Lebesgue Spaces
    Karapetyants, A.
    Lanza de Cristoforis, Massimo
    ANALYSIS MATHEMATICA, 2023, 49 (01) : 151 - 166
  • [27] Fully measurable grand Lebesgue spaces
    Anatriello, G.
    Fiorenza, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 783 - 797
  • [28] Extrapolation in Grand Lebesgue Spaces with A∞ Weights
    V. Kokilashvili
    A. Meskhi
    Mathematical Notes, 2018, 104 : 518 - 529
  • [29] Interpolation orbits in couples of Lebesgue spaces
    V. I. Ovchinnikov
    Functional Analysis and Its Applications, 2005, 39 : 46 - 56
  • [30] On the Factor Opposing the Lebesgue Norm in Generalized Grand Lebesgue Spaces
    Alberto Fiorenza
    Maria Rosaria Formica
    Results in Mathematics, 2021, 76