Characterization of interpolation between Grand, small or classical Lebesgue spaces

被引:31
|
作者
Fiorenza, Alberto [1 ,2 ]
Formica, Maria Rosaria [3 ]
Gogatishvili, Amiran [4 ]
Kopaliani, Tengiz [5 ]
Rakotoson, Jean Michel [6 ]
机构
[1] Univ Napoli Federico II, Dipartimento Architettura, Via Monteoliveto 3, I-80134 Naples, Italy
[2] CNR, Ist Applicaz Calcolo Mauro Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
[3] Univ Napoli Parthenope, Via Gen Parisi 13, I-80132 Naples, Italy
[4] Czech Acad Sci Zitna, Inst Math, Prague 11567 1, Czech Republic
[5] Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, Univ St 2, GE-0143 Tbilisi, Georgia
[6] Univ Poitiers, Lab Math & Applicat, Ave Marie & Pierre Curie,Teleport 2,BP 30179, F-86692 Futuroscope, France
基金
美国国家科学基金会;
关键词
REAL INTERPOLATION; DUALITY;
D O I
10.1016/j.na.2017.09.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the interpolation spaces between Grand, small or classical Lebesgue are so called Lorentz-Zygmund spaces or more generally G Gamma-spaces. As a direct consequence of our results any Lorentz-Zygmund space L-a,L-r (Log L)(beta), is an interpolation space in the sense of Peetre between either two Grand Lebesgue spaces or between two small spaces provided that 1 < a < infinity, beta not equal 0. The method consists in computing the so called K-functional of the interpolation space and in identifying the associated norm. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:422 / 453
页数:32
相关论文
共 50 条
  • [41] Extrapolation in Grand Lebesgue Spaces with Aa Weights
    Kokilashvili, V.
    Meskhi, A.
    MATHEMATICAL NOTES, 2018, 104 (3-4) : 518 - 529
  • [42] Sawyer Duality Principle in Grand Lebesgue Spaces
    P. Jain
    A. P. Singh
    M. Singh
    V. D. Stepanov
    Doklady Mathematics, 2018, 97 : 18 - 19
  • [43] Sawyer Duality Principle in Grand Lebesgue Spaces
    Jain, P.
    Singh, A. P.
    Singh, M.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 18 - 19
  • [44] A note on the continuity of minors in grand Lebesgue spaces
    Anastasia Molchanova
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [45] Grand Lebesgue spaces with respect to measurable functions
    Capone, Claudia
    Formica, Maria Rosaria
    Giova, Raffaella
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 125 - 131
  • [46] The maximal theorem for weighted grand Lebesgue spaces
    Fiorenza, Alberto
    Gupta, Babita
    Jain, Pankaj
    STUDIA MATHEMATICA, 2008, 188 (02) : 123 - 133
  • [47] Local grand variable exponent Lebesgue spaces
    Rafeiro, Humberto
    Samko, Stefan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (1-2): : 1 - 15
  • [48] On grand Lebesgue spaces on sets of infinite measure
    Samko, Stefan
    Umarkhadzhiev, Salaudin
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) : 913 - 919
  • [49] Generalized Grand Lebesgue Spaces Associated to Banach Function Spaces
    Salec, AliReza Bagheri
    Tabatabaie, Seyyed Mohammad
    Albeka, Alaa Mahdi Talib
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 431 - 440
  • [50] INTERPOLATION OF POSITIVE OPERATORS ON VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 639 - 644