Existence of homoclinic solutions for a class of second order systems

被引:15
|
作者
Zhu, Wenzhuang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math, Chern Inst, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Second order systems; Homoclinic solutions; Variational method; Critical points; ORBITS;
D O I
10.1016/j.na.2011.10.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of nontrivial homoclinic solutions for a second order differential equation of the form q + A(q) over dot - L(t)q + W-q(t, q) = 0. Here, we assume that A is a antisymmetric constant matrix, L(t) is a continuous positive definite symmetric matrix valued function depending periodically on t and assume that potential W is asymptotically quadratic as vertical bar q vertical bar -> 0 and vertical bar q vertical bar -> 8. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2455 / 2463
页数:9
相关论文
共 50 条