Homoclinic solutions for a class of second-order Hamiltonian systems

被引:99
|
作者
Tang, X. H. [1 ]
Lin, Xiaoyan [1 ,2 ]
机构
[1] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
[2] Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R China
关键词
Homoclinic solutions; Hamiltonian systems; Coercive potential; ORBITS; EXISTENCE;
D O I
10.1016/j.jmaa.2008.12.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new result for existence of homoclinic orbits is obtained for the second-order Hamiltonian systems u(t) - L(t)u(t) + del[W(1)(t, u(t)) - W(2) (t, u(t))] = f(t), where t is an element of R, u is an element of R(n) and W(1), W(2) is an element of C(1) (R x R(n), R) and f is an element of C(R, R(n)) are not necessary periodic in t. This result generalizes and improves some existing results in the literature. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:539 / 549
页数:11
相关论文
共 50 条
  • [1] Homoclinic solutions for a class of second-order Hamiltonian systems
    Lv, Xiang
    Lu, Shiping
    Jiang, Jifa
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 176 - 185
  • [2] Homoclinic solutions for a class of second-order Hamiltonian systems
    Tang, X. H.
    Xiao, Li
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) : 1140 - 1152
  • [3] Homoclinic Solutions for a Class of the Second-Order Impulsive Hamiltonian Systems
    Xie, Jingli
    Luo, Zhiguo
    Chen, Guoping
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [4] Existence of homoclinic solutions for a class of second-order Hamiltonian systems
    Lv, Xiang
    Lu, Shiping
    Yan, Ping
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) : 390 - 398
  • [5] Homoclinic solutions for a class of subquadratic second-order Hamiltonian systems
    Sun, Juntao
    Chen, Haibo
    Nieto, Juan J.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) : 20 - 29
  • [6] Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems
    Huiwen Chen
    Zhimin He
    [J]. Advances in Difference Equations, 2014
  • [7] Homoclinic solutions for a class of nonperiodic and noneven second-order Hamiltonian systems
    Wu, Dong-Lun
    Wu, Xing-Ping
    Tang, Chun-Lei
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) : 154 - 166
  • [8] Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems
    Chen, Huiwen
    He, Zhimin
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [9] Homoclinic Solutions for a Class of Second Order Hamiltonian Systems
    Rong Yuan
    Ziheng Zhang
    [J]. Results in Mathematics, 2012, 61 : 195 - 208
  • [10] MULTIPLICITY OF HOMOCLINIC SOLUTIONS FOR SECOND-ORDER HAMILTONIAN SYSTEMS
    Bao, Gui
    Han, Zhiqing
    Yang, Minghai
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,