Existence of homoclinic solutions for a class of second order systems

被引:15
|
作者
Zhu, Wenzhuang [1 ,2 ]
机构
[1] Nankai Univ, Sch Math, Chern Inst, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Second order systems; Homoclinic solutions; Variational method; Critical points; ORBITS;
D O I
10.1016/j.na.2011.10.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of nontrivial homoclinic solutions for a second order differential equation of the form q + A(q) over dot - L(t)q + W-q(t, q) = 0. Here, we assume that A is a antisymmetric constant matrix, L(t) is a continuous positive definite symmetric matrix valued function depending periodically on t and assume that potential W is asymptotically quadratic as vertical bar q vertical bar -> 0 and vertical bar q vertical bar -> 8. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2455 / 2463
页数:9
相关论文
共 50 条
  • [11] Homoclinic Solutions for a Class of Second Order Hamiltonian Systems
    Yuan, Rong
    Zhang, Ziheng
    RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 195 - 208
  • [12] Homoclinic solutions for a class of second order Hamiltonian systems
    Zhang, Qingye
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (8-9) : 1073 - 1081
  • [13] HOMOCLINIC SOLUTIONS FOR A CLASS OF SECOND ORDER HAMILTONIAN SYSTEMS
    Wan, Li-Li
    Xiao, Li-Kang
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2012, 4 (02): : 257 - 265
  • [14] On the existence of homoclinic solutions for almost periodic second order systems
    Serra, Enrico
    Tarallo, Massimo
    Terracini, Susanna
    Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, 1996, 13 (06): : 783 - 812
  • [15] On the existence of homoclinic solutions for almost periodic second order systems
    Serra, E
    Tarallo, M
    Terracini, S
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (06): : 783 - 812
  • [16] Existence of homoclinic solutions for a class of second order ordinary differential equations
    Alves, Claudianor O.
    Carriao, Paulo C.
    Faria, Luiz F. O.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2416 - 2428
  • [17] Existence of Homoclinic Solutions for a Class of Nonlinear Second-order Problems
    Yang, Wei
    Ma, Ruyun
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (SUPPL 1)
  • [18] Existence of homoclinic solutions for a class of second-order non-autonomous Hamiltonian systems
    Zhang, Qiongfen
    Tang, X. H.
    MATHEMATICA SLOVACA, 2012, 62 (05) : 909 - 920
  • [19] Existence of homoclinic solutions for a class of second order p-Laplacian systems with impulsive effects
    Li, Li
    Chen, Kai
    BOUNDARY VALUE PROBLEMS, 2014,
  • [20] Existence of homoclinic solutions for a class of second order p-Laplacian systems with impulsive effects
    Li Li
    Kai Chen
    Boundary Value Problems, 2014 (1)