Existence of homoclinic solutions for a class of second order ordinary differential equations

被引:2
|
作者
Alves, Claudianor O. [1 ]
Carriao, Paulo C. [2 ]
Faria, Luiz F. O. [3 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat Estat, Campina Grande, PB, Brazil
[2] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Belo Horizonte, MG, Brazil
[3] Univ Fed Juiz de Fora, Inst Ciencias Exatas, Dept Matemat, Juiz De Fora, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear ODE; Galerkin's Method; Homoclinic solution;
D O I
10.1016/j.nonrwa.2011.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of homoclinic solutions for the following class of second order ordinary differential equations (ODEs) {-(A(u(t)u'(t))' + u(t) = h(t, u(t)) + g(t, u'(t)), t is an element of R u(+/-infinity) = u'(+/-infinity) = 0, (P) where A, h and g are nonnegative continuous functions. Using Galerkin's Method and assuming additional hypotheses on A, h and g, we show the existence of a homoclinic solution to problem (P). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2416 / 2428
页数:13
相关论文
共 50 条