Maximal arithmetic progressions in random subsets

被引:3
|
作者
Benjamini, Itai
Yadin, Ariel
Zeitouni, Ofer
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
Arithmetic progression; Chen-Stein method; Dependency graph; Extreme type limit distribution; Random subset;
D O I
10.1214/ECP.v12-1321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条
  • [41] On disjoint arithmetic progressions
    Chen, YG
    ACTA ARITHMETICA, 2005, 118 (02) : 143 - 148
  • [42] Primes in arithmetic progressions
    Ramare, O
    Rumely, R
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 397 - 425
  • [43] ARITHMETIC PROGRESSIONS IN SUMSETS
    RUZSA, IZ
    ACTA ARITHMETICA, 1991, 60 (02) : 191 - 202
  • [44] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [45] On rainbow arithmetic progressions
    Axenovich, M
    Fon-Der-Flaass, D
    ELECTRONIC JOURNAL OF COMBINATORICS, 2004, 11 (01):
  • [46] Arithmetic progressions and the primes
    Tao, Terence
    COLLECTANEA MATHEMATICA, 2006, : 37 - 88
  • [47] PRIMES IN ARITHMETIC PROGRESSIONS
    MOTOHASHI, Y
    INVENTIONES MATHEMATICAE, 1978, 44 (02) : 163 - 178
  • [48] ARITHMETIC PROGRESSIONS IN SEQUENCES
    CHOI, SLG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (AUG): : 427 - 430
  • [49] ON WEAKLY ARITHMETIC PROGRESSIONS
    HARZHEIM, E
    DISCRETE MATHEMATICS, 1995, 138 (1-3) : 255 - 260
  • [50] DISJOINT ARITHMETIC PROGRESSIONS
    STEELMAN, JH
    AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (03): : 247 - 248