Maximal arithmetic progressions in random subsets

被引:3
|
作者
Benjamini, Itai
Yadin, Ariel
Zeitouni, Ofer
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
[2] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
关键词
Arithmetic progression; Chen-Stein method; Dependency graph; Extreme type limit distribution; Random subset;
D O I
10.1214/ECP.v12-1321
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条
  • [31] The lattice of arithmetic progressions
    Goh, Marcel K.
    Hamdan, Jad
    Saks, Jonah
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 357 - 374
  • [32] ON THE UNION OF ARITHMETIC PROGRESSIONS
    Gilboa, Shoni
    Pinchasi, Rom
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1062 - 1073
  • [33] On a generalisation of Roth's theorem for arithmetic progressions and applications to sum-free subsets
    Dousse, Jehanne
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (02) : 331 - 341
  • [34] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [35] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [36] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [37] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204
  • [38] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [39] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [40] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986