Arithmetic progression;
Chen-Stein method;
Dependency graph;
Extreme type limit distribution;
Random subset;
D O I:
10.1214/ECP.v12-1321
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Let U-( N) denote the maximal length of arithmetic progressions in a random uniform subset of {0,1}(N). By an application of the Chen-Stein method, we show that U-(N)-2 log N/log2 converges in law to an extreme type (asymmetric) distribution. The same result holds for the maximal length W-(N) of arithmetic prorpgressions (mod N). When considered in the natural way on a common probability space, we observe that U-(N)/logN converges almost surely to 2/log2, while W-(N)/logN does not converge almost surely (and in particular, lim sup W-(N)/log N >= 3/log 2).
机构:
UNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLANDUNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLAND
COOK, R
SHARPE, D
论文数: 0引用数: 0
h-index: 0
机构:
UNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLANDUNIV SHEFFIELD,SCH MATH & STAT,PURE MATH SECT,SHEFFIELD S3 7RH,S YORKSHIRE,ENGLAND