Fine-tuning the etch depth profile via dynamic shielding of ion beam

被引:1
|
作者
Wu, Lixiang [1 ]
Qiu, Keqiang [1 ]
Fu, Shaojun [1 ]
机构
[1] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
基金
中国国家自然科学基金;
关键词
Ion beam etching; Shielding rate; Etch depth; Parametric modeling; GRATINGS;
D O I
10.1016/j.nimb.2016.05.021
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We introduce a method for finely adjusting the etch depth profile by dynamic shielding in the course of ion beam etching (IBE), which is crucial for the ultra-precision fabrication of large optics. We study the physical process of dynamic shielding and propose a parametric modeling method to quantitatively analyze the shielding effect on etch depths, or rather the shielding rate, where a piecewise Gaussian model is adopted to fit the shielding rate profile. Two experiments were conducted. The experimental result of parametric modeling of shielding rate profiles shows that the shielding rate profile is significantly influenced by the rotary angle of the leaf. The result of the experiment on fine-tuning the etch depth profile shows good agreement with the simulated result, which preliminarily verifies the feasibility of our method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:72 / 75
页数:4
相关论文
共 50 条
  • [31] Boosting Noise Reduction Effect via Unsupervised Fine-Tuning Strategy
    Jiang, Xinyi
    Xu, Shaoping
    Wu, Junyun
    Zhou, Changfei
    Ji, Shuichen
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [32] Fine-tuning anti-tumor immunotherapies via stochastic simulations
    Caravagna, Giulio
    Barbuti, Roberto
    d'Onofrio, Alberto
    BMC BIOINFORMATICS, 2012, 13
  • [33] Fine-Tuning Large Enterprise Language Models via Ontological Reasoning
    Baldazzi, Teodoro
    Bellomarini, Luigi
    Ceri, Stefano
    Colombo, Andrea
    Gentili, Andrea
    Sallinger, Emanuel
    RULES AND REASONING, RULEML+RR 2023, 2023, 14244 : 86 - 94
  • [34] Improving Generalization of Adversarial Training via Robust Critical Fine-Tuning
    Zhu, Kaijie
    Hu, Xixu
    Wang, Jindong
    Xie, Xing
    Yang, Ge
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4401 - 4411
  • [35] Efficient Neural Network Fine-Tuning via Layer Contribution Analysis
    Liu, Zhizhuo
    Zhou, Nanjian
    Liu, Min
    Liu, Zhibang
    Xu, Chaonong
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT IV, ICIC 2024, 2024, 14865 : 350 - 361
  • [36] Approach for Fine-tuning of Hybrid Dimer Nanoantennas via Laser Melting
    Kolodny, S. A.
    Sun, Yali
    Zuev, D. A.
    Belov, P. A.
    Krasnok, A. E.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 129 - 132
  • [37] Optimizing Fine-Tuning in Quantized Language Models: An In-Depth Analysis of Key Variables
    Shen, Ao
    Lai, Zhiquan
    Li, Dongsheng
    Hu, Xiaoyu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (01): : 307 - 325
  • [38] A dynamic network of estrogen receptors in murine lymphocytes: fine-tuning the immune response
    Schneider, Andrea E.
    Karpati, Eva
    Schuszter, Kitti
    Toth, Eszter A.
    Kiss, Endre
    Kulcsar, Margit
    Laszlo, Gloria
    Matko, Janos
    JOURNAL OF LEUKOCYTE BIOLOGY, 2014, 96 (05) : 857 - 872
  • [39] Dynamic fine-tuning layer selection using Kullback-Leibler divergence
    Wanjiku, Raphael Ngigi
    Nderu, Lawrence
    Kimwele, Michael
    ENGINEERING REPORTS, 2023, 5 (05)
  • [40] Dynamic programming method for fine-tuning the boundary points in automatic segmentation of speech
    Szymanski, Marcin
    Grocholewski, Stefan
    ARCHIVES OF ACOUSTICS, 2007, 32 (01) : 127 - 134