Optimizing Fine-Tuning in Quantized Language Models: An In-Depth Analysis of Key Variables

被引:0
|
作者
Shen, Ao [1 ]
Lai, Zhiquan [1 ]
Li, Dongsheng [1 ]
Hu, Xiaoyu [2 ]
机构
[1] Natl Univ Def Technol, Natl Key Lab Parallel & Distributed Comp, Changsha 410073, Peoples R China
[2] Acad Mil Sci, Strateg Assessments & Consultat Inst, Beijing 100091, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Large-scale Language Model; Parameter-Efficient Fine-Tuning; parameter quantization; key variable; trainable; parameters; experimental analysis;
D O I
10.32604/cmc.2024.057491
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Large-scale Language Models (LLMs) have achieved significant breakthroughs in Natural Language Processing (NLP), driven by the pre-training and fine-tuning paradigm. While this approach allows models to specialize in specific tasks with reduced training costs, the substantial memory requirements during fine-tuning present a barrier to broader deployment. Parameter-Efficient Fine-Tuning (PEFT) techniques, such as Low-Rank Adaptation (LoRA), and parameter quantization methods have emerged as solutions to address these challenges by optimizing memory usage and computational efficiency. Among these, QLoRA, which combines PEFT and quantization, has demonstrated notable success in reducing memory footprints during fine-tuning, prompting the development of various QLoRA variants. Despite these advancements, the quantitative impact of key variables on the fine-tuning performance of quantized LLMs remains underexplored. This study presents a comprehensive analysis of these key variables, focusing on their influence across different layer types and depths within LLM architectures. Our investigation uncovers several critical findings: (1) Larger layers, such as MLP layers, can maintain performance despite reductions in adapter rank, while smaller layers, like self-attention layers, are more sensitive to such changes; (2) The effectiveness of balancing factors depends more on specific values rather than layer type or depth; (3) In quantization-aware fine-tuning, larger layers can effectively utilize smaller adapters, whereas smaller layers struggle to do so. These insights suggest that layer type is a more significant determinant of fine-tuning success than layer depth when optimizing quantized LLMs. Moreover, for the same discount of trainable parameters, reducing the trainable parameters in a larger layer is more effective in preserving fine-tuning accuracy than in a smaller one. This study provides valuable guidance for more efficient fine-tuning strategies and opens avenues for further research into optimizing LLM fine-tuning in resource-constrained environments.
引用
收藏
页码:307 / 325
页数:19
相关论文
共 50 条
  • [1] From pre-training to fine-tuning: An in-depth analysis of Large Language Models in the biomedical domain
    Bonfigli, Agnese
    Bacco, Luca
    Merone, Mario
    Dell'Orletta, Felice
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 157
  • [2] Fine-Tuning of Multijunction Solar Cells: An In-Depth Evaluation
    Parent, Laurene
    Riverola, Alberto
    Chemisana, Daniel
    Dollet, Alain
    Vossier, Alexis
    IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (06): : 1637 - 1643
  • [3] Fine-Tuning Pre-Trained Language Models Effectively by Optimizing Subnetworks Adaptively
    Zhang, Haojie
    Li, Ge
    Li, Jia
    Zhang, Zhongjin
    Zhu, Yuqi
    Jin, Zhi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [4] Phased Instruction Fine-Tuning for Large Language Models
    Pang, Wei
    Zhou, Chuan
    Zhou, Xiao-Hua
    Wang, Xiaojie
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5735 - 5748
  • [5] CONVFIT: Conversational Fine-Tuning of Pretrained Language Models
    Vulic, Ivan
    Su, Pei-Hao
    Coope, Sam
    Gerz, Daniela
    Budzianowski, Pawel
    Casanueva, Inigo
    Mrksic, Nikola
    Wen, Tsung-Hsien
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1151 - 1168
  • [6] Improve Performance of Fine-tuning Language Models with Prompting
    Yang, Zijian Gyozo
    Ligeti-Nagy, Noenn
    INFOCOMMUNICATIONS JOURNAL, 2023, 15 : 62 - 68
  • [7] HackMentor: Fine-Tuning Large Language Models for Cybersecurity
    Zhang, Jie
    Wen, Hui
    Deng, Liting
    Xin, Mingfeng
    Li, Zhi
    Li, Lun
    Zhu, Hongsong
    Sun, Limin
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 452 - 461
  • [8] Fine-tuning language models to recognize semantic relations
    Roussinov, Dmitri
    Sharoff, Serge
    Puchnina, Nadezhda
    LANGUAGE RESOURCES AND EVALUATION, 2023, 57 (04) : 1463 - 1486
  • [9] Fine-tuning language models to recognize semantic relations
    Dmitri Roussinov
    Serge Sharoff
    Nadezhda Puchnina
    Language Resources and Evaluation, 2023, 57 : 1463 - 1486
  • [10] Fine-Tuning Language Models with Just Forward Passes
    Malladi, Sadhika
    Gao, Tianyu
    Nichani, Eshaan
    Damian, Alex
    Lee, Jason D.
    Chen, Danqi
    Arora, Sanjeev
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,